Spectral Properties of Quantum Graphs and Related Systems
量子图及相关系统的谱特性
基本信息
- 批准号:0604859
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project addresses a number of related questions concerning the spectra of differential operators acting on spaces of functions defined on metric graphs. A graph equipped with such an operator is generally referred to as a "quantum graph." The research has two central themes: investigating the correlations between the eigenvalues of quantum graphs, and understanding the morphology of their eigenfunctions. For generic families of graphs the eigenvalues appear to be correlated like eigenvalues of large random matrices. For non-generic graphs, different correlations are expected. The present project will improve the understanding of how these correlations arise both from a mathematical and physical point of view. The results obtained will be useful in understanding the appearance of correlations in the eigenvalues of other differential operators arising in mathematical physics. The second theme of the project is to understand the statistical properties of eigenfunctions of quantum graphs. For generic graphs, it is expected that the eigenfunctions should exhibit some equidistribution properties similar to those already proved to exist in other systems. A central objective of the project is to formulate an analogous theory for eigenfunctions of quantum graphs. It is also suspected that a sparse sequence of eigenfunctions may become localized (scarred) rather than equidistributed. Another part of the project will be to discover whether this can, in fact, occur, and the conditions under which it may do so. brbrQuantum graphs are part of a new branch of mathematics, sometimes called ``nanomathematics'', which contains within its scope areas such as transport in nanostructures, quantum information, and superconductivity. In this context, our study of quantum graphs is part of an effort to understand the theory of quantum mechanics as it relates to classical Newtonian dynamics (so-called "quantum chaology"). The wave-based theory of quantum mechanics is unavoidable on scales of the order of magnitude of present microchip manufacturing. The shapes and frequencies of waves appearing in complex quantum mechanical systems can be understood by looking at similar questions for oscillations on networks. The results of the project will be relevant to current research in many diverse areas of mesoscopic physics and engineering. In order to draw new researchers into the field, part of the project will be used as topics for an undergraduate research experience program, and an introductory graduate text will be written.
该项目解决了一些与作用于度量图上定义的函数空间上的微分算子的谱有关的问题。配备了这样一个运算符的图通常被称为“量子图”。这项研究有两个中心主题:研究量子图的本征值之间的相关性,以及了解它们的本征函数的形态。对于一般图族,其特征值似乎是相关的,就像大型随机矩阵的特征值。对于非通用图形,预期会有不同的相关性。本项目将从数学和物理的角度提高对这些相关性如何产生的理解。所得结果将有助于理解数学物理中出现的其他微分算子本征值的相关现象。该项目的第二个主题是了解量子图的本征函数的统计性质。对于一般图,期望特征函数应该表现出与其他系统中已被证明存在的性质类似的等分布性质。该项目的一个中心目标是为量子图的本征函数建立一个类似的理论。也有人怀疑稀疏的特征函数序列可能变得局部化(伤痕累累),而不是均匀分布。该项目的另一个部分将是发现这种情况是否真的会发生,以及在什么情况下可能会发生这种情况。Brbr量子图是一个新的数学分支的一部分,该分支有时被称为“纳米数学”,它的范围包括纳米结构中的传输、量子信息和超导等领域。在这种背景下,我们对量子图的研究是理解量子力学理论的一部分,因为它与经典牛顿动力学(所谓的量子混沌)有关。在当今微芯片制造的数量级上,基于波的量子力学理论是不可避免的。在复杂的量子力学系统中出现的波的形状和频率可以通过观察网络上的振荡的类似问题来理解。该项目的结果将与当前介观物理和工程领域的许多不同领域的研究相关。为了吸引新的研究人员进入该领域,该项目的一部分将被用作本科生研究体验计划的主题,并将撰写一篇介绍性的研究生文本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY BERKOLAIKO其他文献
GREGORY BERKOLAIKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY BERKOLAIKO', 18)}}的其他基金
A Variational Approach to Spectral Shift and Spectral Minimal Partitions
谱位移和谱最小划分的变分方法
- 批准号:
2247473 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Zeros of Eigenfunctions of Metric Graphs and Their Applications to Spectral Gap Estimates and to Buckling of Structures
度量图本征函数的零点及其在谱间隙估计和结构屈曲中的应用
- 批准号:
1815075 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Inverse Problems and Spectral Theory, October 17-19, 2014
反问题和谱理论会议,2014 年 10 月 17-19 日
- 批准号:
1412493 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Nodal count, magnetic potentials and Dirac cones: exploring the connections
节点数、磁势和狄拉克锥:探索联系
- 批准号:
1410657 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Graphs in spectral analysis of complex systems
复杂系统谱分析中的图表
- 批准号:
0907968 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
- 批准号:
2340733 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
- 批准号:
2301580 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Chemical synthesis and exploration of concerted optical properties of anisotropic three-dimensional quantum dot superlattices
各向异性三维量子点超晶格的化学合成及协同光学性质探索
- 批准号:
23H01802 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum thermodynamical framework for understanding off-equilibrium properties of living systems
用于理解生命系统非平衡特性的量子热力学框架
- 批准号:
2896340 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Exploring the Properties of Quantum Many-Body Scar States in Dipolar Gases
探索偶极气体中量子多体疤痕态的性质
- 批准号:
2308540 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Elucidation of the origin of Anomalous Microwave Emission: Pioneering the theory on quantum properties of interstellar amorphous dust
阐明异常微波发射的起源:开创星际非晶尘埃量子特性理论
- 批准号:
22KJ0727 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
- 批准号:
23K17905 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CDS&E: Excited-state properties and the impact of random defects in quantum materials
CDS
- 批准号:
2202101 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Low Dimensional Materials and their Topological and Collective Properties
量子低维材料及其拓扑和集体性质
- 批准号:
RGPIN-2021-04079 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
- 批准号:
559996-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral