Complex Amphiphilic Structures and the Functionality of Biomaterials

复杂的两亲结构和生物材料的功能

基本信息

  • 批准号:
    1815746
  • 负责人:
  • 金额:
    $ 21.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Complex amphiphilic structures are closely related to phase transitions, materials science, and mathematical biology. This project concentrates on the influence of nanoparticles, proteins and hydrophobic surfaces on the morphology of amphiphilic structures. This research greatly advances the understanding of the functionality of nanoparticles, bio-inspired materials, and biological membranes. It helps us understand essential processes like protein transportation, drug encapsulation, and drug delivery. It also provides new methods and techniques for the modeling and analysis of properties of other complex structures in polymeric materials. The educational activities include the supervision and training of graduate research. The educational goal is for graduate students to be trained in mathematical modeling, and in the analysis and numerical simulation of partial differential equations.This research project concentrates on interdisciplinary research that combines applied mathematics and science, technology, and engineering. The PI is an applied mathematician, and the co-PI is a chemical experimentalist. The investigators model the encapsulation of nanoparticles in bilayer liposomes and polymeric micelles, the coating of biomaterials by amphiphilic copolymers, and the change of morphology caused by proteins, in the framework of the functionalized Cahn-Hilliard (FCH) energy, coupled with proper strong and weak anchoring conditions. This new mathematical framework translates the materials system into nonlinear PDEs coupled with proper boundary conditions. It has wide applications in the modeling of other physical, materials and biological systems. The PIs apply existing and new mathematical tools for the study of nonlinear PDEs. These tools lie in three areas: asymptotic analysis, variational methods, and numerical simulations. They are very useful in the study of other problems in applied mathematics related to nonlinear PDEs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的两亲性结构与相变、材料科学和数学生物学密切相关。该项目集中于纳米颗粒、蛋白质和疏水表面对两亲性结构形态的影响。这项研究极大地推进了对纳米粒子、生物启发材料和生物膜功能的理解。它帮助我们了解蛋白质运输,药物封装和药物输送等基本过程。这也为高分子材料中其他复杂结构的建模和性能分析提供了新的方法和技术。教育活动包括研究生研究的监督和培训。本研究项目以培养数学建模、偏微分方程的解析和数值模拟等方面的研究生为目标,致力于应用数学与科学、技术、工程相结合的跨学科研究。PI是一个应用数学家,而co-PI是一个化学实验家。研究人员在功能化Cahn-Hilliard(FCH)能量的框架内,结合适当的强锚定条件和弱锚定条件,模拟了双层脂质体和聚合物胶束中纳米颗粒的包封,两亲性共聚物对生物材料的包覆,以及蛋白质引起的形态变化。这种新的数学框架将材料系统转化为具有适当边界条件的非线性偏微分方程。它在其他物理、材料和生物系统的建模中有着广泛的应用。PI应用现有的和新的数学工具的非线性偏微分方程的研究。这些工具包括三个方面:渐近分析、变分方法和数值模拟。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Cahn–Hilliard equation with no-flux and strong anchoring conditions
On nonnegative solutions for the Functionalized Cahn–Hilliard equation with degenerate mobility
具有简并迁移率的函数化 Cahn-Hilliard 方程的非负解
  • DOI:
    10.1016/j.rinam.2021.100195
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Dai, Shibin;Liu, Qiang;Luong, Toai;Promislow, Keith
  • 通讯作者:
    Promislow, Keith
Rigorous derivation of a mean field model for the Ostwald ripening of thin films
薄膜奥斯特瓦尔德熟化平均场模型的严格推导
Weak solutions for the functionalized Cahn–Hilliard equation with degenerate mobility
  • DOI:
    10.1080/00036811.2019.1585536
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Shibin Dai;Qiang Liu;K. Promislow
  • 通讯作者:
    Shibin Dai;Qiang Liu;K. Promislow
Geometric Evolution of Bilayers under the Degenerate Functionalized Cahn–Hilliard Equation
简并函数化 Cahn-Hilliard 方程下双层的几何演化
  • DOI:
    10.1137/21m1467791
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Dai, Shibin;Luong, Toai;Ma, Xiang
  • 通讯作者:
    Ma, Xiang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shibin Dai其他文献

On a mean field model for 1D thin film droplet coarsening
  • DOI:
    10.1088/0951-7715/23/2/006
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Shibin Dai
  • 通讯作者:
    Shibin Dai
On the Ostwald ripening of thin liquid films
液体薄膜的奥斯特瓦尔德熟化
  • DOI:
    10.4310/cms.2011.v9.n1.a7
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shibin Dai
  • 通讯作者:
    Shibin Dai
Universal bounds on coarsening rates for some models of phase transitions
某些相变模型的粗化率的通用界限
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shibin Dai
  • 通讯作者:
    Shibin Dai
Competitive Geometric Evolution of Amphiphilic Interfaces
两亲界面的竞争性几何演化
  • DOI:
    10.1137/130941432
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shibin Dai;K. Promislow
  • 通讯作者:
    K. Promislow

Shibin Dai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shibin Dai', 18)}}的其他基金

Degenerate Diffusion in Complex Amphiphilic Network Structures
复杂两亲网络结构中的简并扩散
  • 批准号:
    1802863
  • 财政年份:
    2017
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Continuing Grant
Degenerate Diffusion in Complex Amphiphilic Network Structures
复杂两亲网络结构中的简并扩散
  • 批准号:
    1411438
  • 财政年份:
    2014
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Continuing Grant

相似海外基金

Degenerate Diffusion in Complex Amphiphilic Network Structures
复杂两亲网络结构中的简并扩散
  • 批准号:
    1802863
  • 财政年份:
    2017
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Continuing Grant
Facial Amphiphilic Antimicrobials Biomaterials Containing Fused Multicyclic Structures
含有稠合多环结构的面部两亲性抗菌生物材料
  • 批准号:
    1608151
  • 财政年份:
    2016
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Standard Grant
Investigating the Structural Coupling of Main chain and Sidechain Packing in the Solution Structures of Amphiphilic Coil-Comb Block Copolymers with Crystallizable Sidechains
研究具有可结晶侧链的两亲性线圈-梳状嵌段共聚物溶液结构中主链和侧链堆积的结构耦合
  • 批准号:
    1609447
  • 财政年份:
    2016
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Continuing Grant
Degenerate Diffusion in Complex Amphiphilic Network Structures
复杂两亲网络结构中的简并扩散
  • 批准号:
    1411438
  • 财政年份:
    2014
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Continuing Grant
Sculpting Dynamic Amphiphilic Structures
雕刻动态两亲结构
  • 批准号:
    EP/J017566/1
  • 财政年份:
    2012
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Research Grant
Novel Supramolecular Structures of Laterally Confined Amphiphilic Molecules
横向限制两亲分子的新型超分子结构
  • 批准号:
    1068705
  • 财政年份:
    2011
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Standard Grant
SONS - Biofunctional Self-Organized Nano-Structures of ionic/non-ionic amphiphilic copolymers, biopolymers-biomacromolecules and nanoparticles: from bioinspired to biointegrated systems
SONS - 离子/非离子两亲共聚物、生物聚合物-生物大分子和纳米颗粒的生物功能自组织纳米结构:从生物启发到生物集成系统
  • 批准号:
    25023065
  • 财政年份:
    2006
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Research Grants
Control of Nanoscale Structures of Amphiphilic Self-Assembly by Physical Factors
物理因素对两亲性自组装纳米结构的控制
  • 批准号:
    12440200
  • 财政年份:
    2000
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adhesion Deformation and Fusion of Bilayer Vesicles and Other Amphiphilic Structures in Solution
溶液中双层囊泡和其他两亲结构的粘附变形和融合
  • 批准号:
    8721741
  • 财政年份:
    1988
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Continuing Grant
Amphiphilic Association Structures of Prepolymerized Compounds (Expedited Award; Industry/University Cooperation)
预聚化合物的两亲缔合结构(加急奖;产学合作)
  • 批准号:
    8616682
  • 财政年份:
    1986
  • 资助金额:
    $ 21.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了