SaTC: CORE: Small: Models and Measurements for Website Fingerprinting
SaTC:核心:小型:网站指纹识别的模型和测量
基本信息
- 批准号:1815757
- 负责人:
- 金额:$ 49.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many private interactions between individuals and their friends, families, employers, and institutions are now carried out on the Internet; disclosure of the contents of these interactions or even the mere associations between these parties can expose people to real financial or physical risks. As a result, encryption and services such as virtual private networks or the Tor project that conceal the connection between a user and the websites they visit are growing in popularity. Website fingerprinting attacks use information that is not concealed by these techniques, such as file sizes and download times, to re-identify the websites a user visits, but while these attacks work in a lab environment, it is a challenge to evaluate them in practical settings and develop effective protections against them. This project will apply statistics and machine learning to develop new probabilistic models of the "fingerprint" of a website, metrics of the amount of information these models reveal, and privacy preserving algorithms and datasets to test these models. The results of these models and tests will be used to assess the threat posed by website fingerprinting and inform the design of new defense mechanisms. As a result, users will benefit from improved protection techniques, while other researchers can use the resulting models, datasets, and metrics to study the effectiveness of website fingerprinting defenses. The work and data will also be used to support both undergraduate and graduate education through both courses and research training.This project will seek to address three key challenges in website fingerprinting research -- privacy-preserving characterization of background traffic, maintaining fingerprint databases, and evaluation and comparison of defenses -- by developing new representations of website fingerprints that can assign a likelihood to any fingerprint being generated by a specific type of download. Using these representations, the project will pursue four main thrusts. First, the project will use these models to determine the extent to which website fingerprints can directly infer identifying features of a download without requiring a database of all possible web pages, moving from existing closed world approaches to website fingerprinting toward more broadly applicable open world approaches. Second, the project will develop algorithms to train the models on live traffic while preserving the privacy of individual users using concepts from differential privacy. Third, using the trained models, the project will provide the first assessment of attacks and defenses on realistic data, and use metrics from information theory to compare those attacks and defenses on an equal footing. Finally, the project will use the results of these evaluations to develop new defensive techniques that can be applied directly to the content of privacy-sensitive sites and to systems designed to protect users' downloads such as the Tor network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现在,个人与朋友,家人,雇主和机构之间进行了许多私人互动,现在在互联网上进行;披露这些相互作用的内容,甚至这些当事方之间的仅仅关联都可以使人们面临实际的财务或物理风险。结果,掩盖用户和他们访问的网站之间连接的虚拟专用网络或TOR项目等加密和服务正在越来越受欢迎。 网站指纹攻击使用这些技术不隐藏的信息,例如文件大小和下载时间,以重新识别用户访问的网站,但是尽管这些攻击在实验室环境中起作用,但在实验室环境中起作用,在实践环境中评估它们并开发有效的保护措施是一个挑战。 该项目将应用统计信息和机器学习来开发网站“指纹”的新概率模型,这些模型显示的信息量的指标以及保留算法和数据集的隐私性来测试这些模型。 这些模型和测试的结果将用于评估网站指纹构成的威胁,并为新的防御机制的设计提供信息。 结果,用户将受益于改进的保护技术,而其他研究人员可以使用所得模型,数据集和指标来研究网站指纹防御的有效性。 The work and data will also be used to support both undergraduate and graduate education through both courses and research training.This project will seek to address three key challenges in website fingerprinting research -- privacy-preserving characterization of background traffic, maintaining fingerprint databases, and evaluation and comparison of defenses -- by developing new representations of website fingerprints that can assign a likelihood to any fingerprint being generated by a specific type of download. 使用这些表示形式,该项目将追求四个主要推力。 首先,该项目将使用这些模型来确定网站指纹可以直接推断下载的特征在不需要所有可能的网页数据库的情况下,从现有的封闭世界方法转变为网站指纹转向更广泛适用的开放世界方法。 其次,该项目将开发算法来培训模型在实时流量上,同时使用来自差异隐私的概念保留单个用户的隐私。 第三,使用训练有素的模型,该项目将对现实数据的攻击和防御措施进行首次评估,并使用信息理论的指标来比较这些攻击和防御。 最后,该项目将使用这些评估的结果来开发新的防御技术,这些技术可以直接应用于隐私敏感站点的内容以及旨在保护用户下载(例如TOR Network)的系统。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和广泛影响的评估来审查CRETERIA的NSF的法定任务。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
p1-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning
p1-FP:利用深度学习提取、分类和预测网站指纹
- DOI:10.2478/popets-2019-0043
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Oh, Se Eun;Sunkam, Saikrishna;Hopper, Nicholas
- 通讯作者:Hopper, Nicholas
SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
- DOI:10.1109/sp46215.2023.10179289
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Nate Mathews;James K. Holland;Se Eun Oh;Mohammad Saidur Rahman;Nicholas Hopper;M. Wright
- 通讯作者:Nate Mathews;James K. Holland;Se Eun Oh;Mohammad Saidur Rahman;Nicholas Hopper;M. Wright
Padding-only Defenses Add Delay in Tor
仅填充防御会增加 Tor 的延迟
- DOI:10.1145/3559613.3563207
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Witwer, Ethan;Holland, James K.;Hopper, Nicholas
- 通讯作者:Hopper, Nicholas
RegulaTor: A Straightforward Website Fingerprinting Defense
Regulator:简单的网站指纹防御
- DOI:10.2478/popets-2022-0049
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Holland, James K;Hopper, Nicholas
- 通讯作者:Hopper, Nicholas
DeepCoFFEA: Improved Flow Correlation Attacks on Tor via Metric Learning and Amplification
DeepCoFFEA:通过度量学习和放大改进对 Tor 的流相关攻击
- DOI:10.1109/sp46214.2022.9833801
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Oh, Se Eun;Yang, Taiji;Mathews, Nate;Holland, James K;Rahman, Mohammad Saidur;Hopper, Nicholas;Wright, Matthew
- 通讯作者:Wright, Matthew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Hopper其他文献
MP3: A More Efficient Private Presence Protocol
MP3:更高效的私人存在协议
- DOI:
10.1007/978-3-662-58387-6_3 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Rahul Parhi;Michael Schliep;Nicholas Hopper - 通讯作者:
Nicholas Hopper
How Low Can You Go: Balancing Performance with Anonymity in Tor
你能做到多低:在 Tor 中平衡性能与匿名性
- DOI:
10.1007/978-3-642-39077-7_9 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
John Geddes;Rob Jansen;Nicholas Hopper - 通讯作者:
Nicholas Hopper
Fingerprinting Keywords in Search Queries over Tor
对 Tor 搜索查询中的关键字进行指纹识别
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Se Eun Oh;Shuai Li;Nicholas Hopper - 通讯作者:
Nicholas Hopper
Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR
使用 SYM-GOTR 实现一致的同步组非记录消息传递
- DOI:
10.1515/popets-2018-0027 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michael Schliep;Eugene Y. Vasserman;Nicholas Hopper - 通讯作者:
Nicholas Hopper
Robust Accounting in Decentralized P2P Storage Systems
去中心化 P2P 存储系统中的稳健核算
- DOI:
10.1109/icdcs.2006.71 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ivan Osipkov;Peng Wang;Nicholas Hopper - 通讯作者:
Nicholas Hopper
Nicholas Hopper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Hopper', 18)}}的其他基金
SaTC: Student Travel Support: Privacy Enhancing Technologies Symposium (PETS) 2018
SaTC:学生旅行支持:隐私增强技术研讨会 (PETS) 2018
- 批准号:
1834882 - 财政年份:2018
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Consistent and Private Group Communication
SaTC:核心:小型:一致且私密的团体沟通
- 批准号:
1814753 - 财政年份:2018
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
SaTC: CORE: Student Travel Support: Privacy Enhancing Technologies Symposium (PETS) 2017
SaTC:核心:学生旅行支持:隐私增强技术研讨会 (PETS) 2017
- 批准号:
1744153 - 财政年份:2017
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
TWC: Option: Medium: Measurement-Based Design and Analysis of Censorship Circumvention Schemes
TWC:选项:中:基于测量的审查规避方案设计和分析
- 批准号:
1314637 - 财政年份:2013
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
TWC: Small: Measuring and improving BGP churn resilience
TWC:小:测量和提高 BGP 流失弹性
- 批准号:
1223421 - 财政年份:2012
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
TC: Small: Scalable Censorship Resistant Overlay Networks
TC:小型:可扩展的抗审查覆盖网络
- 批准号:
0917154 - 财政年份:2009
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
CT-ISG: A Framework for Trustworthy Cooperative P2P Applications
CT-ISG:值得信赖的协作 P2P 应用程序框架
- 批准号:
0716025 - 财政年份:2007
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
CAREER: Practice-oriented provably secure information hiding
职业:面向实践的可证明安全的信息隐藏
- 批准号:
0546162 - 财政年份:2006
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant