Discovering the Building Blocks and Structure Property Relationships of Grain Boundaries Using Machine Learning
使用机器学习发现晶界的构建块和结构属性关系
基本信息
- 批准号:1817321
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports computational, data-centric, theoretical research and education aimed to include the effects of defects in optimizing the properties of metal alloys. Defects in the structure of materials, such as interfaces between constituent crystallites or grains, can strongly influence their strength or resistance to corrosion and cracking. Scientists and engineers have been able to create a limited number of materials with enhanced corrosion and crack resistance by finding and increasing the fraction of interfaces, or grain boundaries, that were correlated with these properties. Unfortunately, these successes were limited to a small fraction of real-world materials. The PIs' preliminary work suggests that through artificial intelligence techniques - machine learning - grain boundary structures can be identified that correlate with specific material behaviors. This award supports the application of machine learning and other data intensive techniques to correlate microscopic grain boundary structure with different macroscopic properties. Specific attention will be paid to which methods provide the most useful insight and which methods allow one to identify the physical processes controlling grain boundary behaviors of interest. The work will enable the next generation of materials to be tailored with properties unique to specific applications. This could enable a range of optimized materials such as alloys with superior corrosion-resistance and deformation-resistance, high strength-high ductility materials, and enhanced fracture-resistant materials.This project supports education and training of the future workforce in data-intensive materials research. Software developed through research and data created through research will be made available to the broader community.TECHNICAL SUMMARYThis award supports computational, data-centric, theoretical research and education to combine machine learning and multi-resolution representations to discover grain-boundary structure-property relationships and advance materials design. Identifying the microscopic features that affect macroscopic materials properties is essential to materials design. Optimizing alloy performance where grain boundaries play an important role is limited by current understanding of the microscopic structures that affect macroscopic properties. The PI will combine machine learning and multi-resolution representations to discover grain boundary structure-property relationships. Preliminary results led to representations that retain physical interpretability and suggest that the physical mechanisms that control grain boundary behavior can be identified. The PI's aim to obtain grain boundary structure-property relationships that incorporate both atomistic and crystallographic structure. To pursue this goal, the PIs will: 1. Apply Statistical Mechanics to Grain Boundaries: Grain boundary potential energy landscapes will be examined for their influence on both static and dynamical properties;2. Determine Long-Range Effects of Structures on Properties: A multi-scale representation will be used to predict properties, such as shear coupling, which cannot be predicted well using only short-range environments. The PIs aim to identify the short- and long-range structures that correlate with various properties and verify their role using another representation, scattering convolutional networks.3. Connect Crystallographic Property Trends to Atomic Structure: Translate atomistic property trends learned in this project into experimental, or crystallographic, coordinates. This will connect microscopic structure to macroscopic properties and advance toward grain boundary engineering.The research combines modeling, theory, machine learning, and simulations to discover grain boundary structure-property relationships and their governing physics. Two graduate students will work closely with both PIs to form a cross-disciplinary team to tackle this challenging problem and will be trained in data-intensive materials research and other advanced methods of materials research. Software developed through research and data created through research will be made available to the broader community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持以数据为中心的计算、理论研究和教育,旨在包括缺陷对优化金属合金性能的影响。材料结构中的缺陷,例如组成微晶或晶粒之间的界面,会强烈影响其强度或耐腐蚀和开裂性。通过寻找和增加与这些特性相关的界面或晶界的比例,科学家和工程师已经能够创造出数量有限的具有增强耐腐蚀性和抗裂性的材料。不幸的是,这些成功仅限于现实世界材料的一小部分。 PI 的初步工作表明,通过人工智能技术(机器学习)可以识别与特定材料行为相关的晶界结构。该奖项支持应用机器学习和其他数据密集型技术将微观晶界结构与不同的宏观特性关联起来。将特别关注哪些方法提供最有用的见解以及哪些方法允许人们识别控制感兴趣的晶界行为的物理过程。这项工作将使下一代材料能够根据特定应用的独特特性进行定制。这可以实现一系列优化材料,例如具有优异耐腐蚀和抗变形能力的合金、高强度高延展性材料以及增强的抗断裂材料。该项目支持对数据密集型材料研究的未来劳动力的教育和培训。通过研究开发的软件和通过研究创建的数据将提供给更广泛的社区。技术摘要该奖项支持计算、以数据为中心的理论研究和教育,将机器学习和多分辨率表示相结合,以发现晶界结构-性能关系并推进材料设计。 识别影响宏观材料性能的微观特征对于材料设计至关重要。目前对影响宏观性能的微观结构的理解限制了晶界发挥重要作用的合金性能的优化。 PI 将结合机器学习和多分辨率表示来发现晶界结构-性质关系。初步结果得出了保留物理可解释性的表示,并表明可以识别控制晶界行为的物理机制。 PI 的目标是获得包含原子结构和晶体结构的晶界结构-性质关系。为了实现这一目标,PI 将: 1. 将统计力学应用于晶界:将检查晶界势能景观对静态和动态特性的影响;2. 将统计力学应用于晶界。确定结构对属性的远程影响:多尺度表示将用于预测属性,例如剪切耦合,仅使用短程环境无法很好地预测这些属性。 PI 旨在识别与各种属性相关的短程和长程结构,并使用另一种表示形式(散射卷积网络)验证它们的作用。3.将晶体学性质趋势与原子结构联系起来:将本项目中学到的原子性质趋势转化为实验或晶体学坐标。这将把微观结构与宏观特性联系起来,并推进晶界工程。该研究结合了建模、理论、机器学习和模拟,以发现晶界结构-特性关系及其控制物理。两名研究生将与两位 PI 密切合作,组成一个跨学科团队来解决这一具有挑战性的问题,并将接受数据密集型材料研究和其他先进材料研究方法的培训。通过研究开发的软件和通过研究创建的数据将提供给更广泛的社区。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Examination of computed aluminum grain boundary structures and energies that span the 5D space of crystallographic character
- DOI:10.1016/j.actamat.2022.118006
- 发表时间:2022-05-26
- 期刊:
- 影响因子:9.4
- 作者:Homer, Eric R.;Hart, Gus L. W.;Serafin, Lydia Harris
- 通讯作者:Serafin, Lydia Harris
Relative grain boundary energies from triple junction geometry: Limitations to assuming the Herring condition in nanocrystalline thin films
三结几何形状的相对晶界能量:假设纳米晶薄膜中赫林条件的局限性
- DOI:10.1016/j.actamat.2022.118476
- 发表时间:2023
- 期刊:
- 影响因子:9.4
- 作者:Patrick, Matthew J.;Rohrer, Gregory S.;Chirayutthanasak, Ooraphan;Ratanaphan, Sutatch;Homer, Eric R.;Hart, Gus L. W.;Epshteyn, Yekaterina;Barmak, Katayun
- 通讯作者:Barmak, Katayun
Computed Aluminum Grain Boundary Structures and Energies Covering the 5D Space of Crystallographic Character
计算覆盖晶体特征 5D 空间的铝晶界结构和能量
- DOI:10.17632/4ykjz4ngwt
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Homer, Eric
- 通讯作者:Homer, Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Homer其他文献
Eric Homer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Homer', 18)}}的其他基金
Collaborative Research: Martensitic Transformations in Paraelectric Shape Memory Ceramics Activated by an Electric Field
合作研究:电场激活顺电形状记忆陶瓷中的马氏体转变
- 批准号:
2204644 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Collaborative Research: Elucidating the Mechanics of Shear Delocalization in Metallic Glass Matrix Composites
合作研究:阐明金属玻璃基复合材料中剪切离域的机理
- 批准号:
1401777 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
- 批准号:31771933
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Legacy Department of Trade & Industry
Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
- 批准号:
DP240101571 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Discovery Projects
Digital building blocks of elementary school foreign language reading motivation
小学外语阅读动机的数字积木
- 批准号:
23K25344 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAS: Degradable Polyacrylates From Natural and Scalable Building Blocks
CAS:来自天然和可扩展构件的可降解聚丙烯酸酯
- 批准号:
2348679 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Stereoselective Reactions of Aromatic Building Blocks
芳香族嵌段的立体选择性反应
- 批准号:
2246693 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Catalytic Hydrofluorination for the Assembly of Chiral Fluorinated Building Blocks
用于组装手性氟化砌块的催化氢氟化反应
- 批准号:
EP/X013081/1 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Research Grant
LEAPS-MPS: Aryl Tosylates as Building Blocks for the Synthesis of Oxygen-containing Heterocycles
LEAPS-MPS:芳基甲苯磺酸盐作为合成含氧杂环的结构单元
- 批准号:
2316992 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
HNDS-I: Critical Data Building Blocks for Socioeconomic Research - Administrative Boundaries
HNDS-I:社会经济研究的关键数据构建模块 - 行政边界
- 批准号:
2317591 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Functional Nucleic Acids as Versatile SMart BUilding BLocks in Non-Conventlonal SolvenTs
功能性核酸作为非常规溶剂中的多功能智能构建模块
- 批准号:
10077478 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
EU-Funded
Efficient and Mild Synthesis of Arynes from Readily Available Building Blocks
从现成的结构单元高效温和地合成芳炔
- 批准号:
2247802 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant














{{item.name}}会员




