Mechanical signal transduction and growth control: role of osmoregulation and cell wall extensibility
机械信号转导和生长控制:渗透调节和细胞壁延伸性的作用
基本信息
- 批准号:1817934
- 负责人:
- 金额:$ 81.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will analyze how plants sense and adjust to their mechanical environment. Plants constantly experience mechanical challenges such as wind, heavy rain or dense soils. Many plants respond to these challenges by developing thicker, shorter stems and by tuning the architecture of their root systems for enhanced stability and strength. In crop plants, such responses play an important role in determining yield. To improve plant growth under adverse mechanical conditions, it is essential to understand how plants perceive mechanical challenges and how they translate this information into appropriate developmental responses. This project will analyze how the activity of plant membrane proteins is coordinated to modulate the mechanical properties of plant cells and organs in response to mechanical challenges. Understanding such processes should be of practical value in engineering more resilient and robust agricultural crops. Furthermore, tools will be developed that will enable researchers to identify which cells in a plant experience mechanical stresses under different growth conditions. Finally, this project will provide training opportunities in modern molecular biology and microscopy techniques for a postdoctoral researcher, graduate and undergraduate students. It also includes effective hands-on investigation of original hypotheses by large numbers of students while introducing high school students to molecular biology research and techniques. Cellular perception of mechanical stress is a key element of growth control in plants. Mechanical forces associated with turgor pressure are harnessed to drive cellular expansion while mechanical cues imposed by the environment typically cause a reduction in cell elongation. The principal investigator's laboratory has identified the receptor-like kinase FERONIA as both a key regulator of mechanical Ca2+ signaling and a control element of cell expansion and growth responses to environmental mechanical challenges. A major research goal is to identify targets of FERONIA-dependent signaling and to understand how these signaling components impact cell expansion. To this end imaging-based tools will be developed to quantify rapid cellular osmoregulation, determine changes in viscoelastic properties of cell walls, and characterize the distribution and magnitude of mechanical signaling patterns in living tissues. This research aims to provide insight into the molecular mechanisms of mechanical signal transduction, identify strategies to enhance plant mechanical strength and provide the means to monitor mechanical stress in situ during plant development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将分析植物如何感知和适应机械环境。植物不断经历机械的挑战,如风,大雨或密集的土壤。许多植物通过发展更粗,更短的茎和调整其根系的结构来应对这些挑战,以增强稳定性和强度。在作物中,这种反应在决定产量方面起着重要作用。为了改善植物在不利机械条件下的生长,了解植物如何感知机械挑战以及它们如何将这些信息转化为适当的发育反应是至关重要的。该项目将分析植物膜蛋白的活性是如何协调的,以调节植物细胞和器官的机械性能,以应对机械挑战。了解这些过程应该是工程更有弹性和强大的农作物的实际价值。此外,将开发工具,使研究人员能够确定植物中的哪些细胞在不同的生长条件下经历机械应力。最后,本项目将为博士后研究人员、研究生和本科生提供现代分子生物学和显微镜技术的培训机会。它还包括大量学生对原始假设的有效实践调查,同时向高中生介绍分子生物学研究和技术。细胞对机械应力的感知是植物生长控制的关键因素。与膨压相关的机械力被利用来驱动细胞扩张,而由环境施加的机械提示通常导致细胞伸长的减少。主要研究者的实验室已经确定受体样激酶FERONIA既是机械Ca2+信号传导的关键调节因子,也是细胞扩增和生长对环境机械挑战的反应的控制元件。一个主要的研究目标是确定FERONIA依赖性信号传导的靶点,并了解这些信号传导成分如何影响细胞扩增。为此,将开发基于成像的工具来量化快速的细胞粘附调节,确定细胞壁粘弹性的变化,并表征活组织中机械信号模式的分布和大小。该研究旨在深入了解机械信号转导的分子机制,确定提高植物机械强度的策略,并提供在植物发育过程中原位监测机械应力的方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriele Monshausen其他文献
Gabriele Monshausen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriele Monshausen', 18)}}的其他基金
Mapping Cellular Mechanisms of Auxin Signal Transduction
绘制生长素信号转导的细胞机制
- 批准号:
1121994 - 财政年份:2011
- 资助金额:
$ 81.99万 - 项目类别:
Continuing Grant
相似国自然基金
组蛋白乙酰化修饰ATG13激活自噬在牵张应力介导骨缝Gli1+干细胞成骨中的机制研究
- 批准号:82370988
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
胰岛素和细菌信号协同调节巨噬细胞免疫反应的作用
- 批准号:92057105
- 批准年份:2020
- 资助金额:89.0 万元
- 项目类别:重大研究计划
谷氨酰胺缺失引发的线粒体融合调控肿瘤细胞代谢稳态的机制研究
- 批准号:31900542
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Smurf1介导的p120-catenin单泛素化修饰在上皮间质转化及肿瘤扩散过程中的作用和分子机制的研究
- 批准号:31970742
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
葡萄糖缺乏诱导的长链非编码RNA-GDLR促进肝癌细胞存活和增殖的作用及机制研究
- 批准号:91957108
- 批准年份:2019
- 资助金额:86.0 万元
- 项目类别:重大研究计划
调控细胞趋向性运动的极性信号蛋白的筛选与功能研究
- 批准号:31872828
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
p53突变体R175H调控Par3信号途径促进肺癌细胞转移及其分子机制研究
- 批准号:31801175
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
干扰素诱导基因C19orf18在淋巴细胞迁移的调控机制研究
- 批准号:31701220
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
调控细胞迁移的新信号通路网络及其在乳腺癌转移中的作用
- 批准号:31771541
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
过表达CX45联合HCN4基因转染对起搏细胞自律性的影响
- 批准号:81170174
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Differential changes in energy metabolism in response to mechanical tension give rise to human scaring heterogeneity
响应机械张力的能量代谢的差异变化导致人类恐惧异质性
- 批准号:
10660416 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
- 批准号:
10832871 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Mechanical regulation of intestine stem cell-mediated tissue homeostasis in Drosophila
果蝇肠干细胞介导的组织稳态的机械调节
- 批准号:
10638341 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Mechanical Load Effects on Cardiac Function and Heart Diseases
机械负荷对心脏功能和心脏病的影响
- 批准号:
10573078 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Decoding the mechanical interactions between tissue layers sculpting organ shape
解码塑造器官形状的组织层之间的机械相互作用
- 批准号:
10572921 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Targeting T2 inflammation-evoked mechanical endotypes of ASM shortening in asthma
靶向哮喘中 ASM 缩短的 T2 炎症诱发机械内型
- 批准号:
10657988 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Probing how hair bundle mechanical properties shape the mechanotransducer receptor current
探讨发束机械特性如何塑造机械传感器受体电流
- 批准号:
10778103 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Renewed bone remodeling after pausing long-term bisphosphonate use: Does it replace regions of impaired bone quality and restore mechanical integrity?
暂停长期使用双膦酸盐后重新进行骨重塑:它是否可以替代骨质量受损的区域并恢复机械完整性?
- 批准号:
10656954 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Mechanical regulation of T cell receptor and co-receptor responses in cancer immunotherapy
癌症免疫治疗中 T 细胞受体和辅助受体反应的机械调节
- 批准号:
10530023 - 财政年份:2022
- 资助金额:
$ 81.99万 - 项目类别: