Mechanical Load Effects on Cardiac Function and Heart Diseases

机械负荷对心脏功能和心脏病的影响

基本信息

  • 批准号:
    10573078
  • 负责人:
  • 金额:
    $ 110.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2030-02-28
  • 项目状态:
    未结题

项目摘要

Significance: In every heartbeat, cardiac muscle cells generate contractile force to pump blood into circulation against a mechanical load. Cardiomyocytes also sense load changes and adjust the contractility to maintain cardiac output. Excessive overload in pathological conditions leads to heart diseases such as arrhythmias and heart failure. However, fundamental knowledge gaps still exist in the molecular and cellular mechanisms of mechano-transduction in cardiomyocytes, and therapeutic treatments for mechanical stress associated heart diseases (e.g., hypertension induced arrhythmias and heart failure, DCM, HFpEF) are severely limited to date. Innovations: Previous experiments using load-free cardiomyocytes largely missed mechanical load effects on regulating cardiomyocytes. We will develop an innovative Cell-in-Gel-TR technology to control mechanical load at the single-cell level. Our studies reveal that the mechanical load on the cell during contraction can feedback to regulate the 3 dynamic systems in excitation-Ca2+ signaling-contraction (E-C) coupling; closing these feedback loops enables the cardiomyocyte to autoregulate E-C coupling in response to load changes. This conceptual innovation will be explored in our R35 research to understand how mechanical load affects cardiomyocyte function and heart diseases. Research Plan: The central theme of my research is to elucidate how the 3 dynamic systems in E-C coupling feedforward and feedback to control the heart function as a dynamically regulated smart pump. In R35, we will expand and deepen our research beyond the 2 R01s to do multi-scale systematic studies of the mechano-transduction mechanisms and functional consequences. (1) Molecular level study to decipher mechano-chemo-electro-transduction (MCET) pathways, identify the key players, and determine molecular mechanisms. (2) Cell level study to investigate how mechanical load regulates the dynamic systems of excitation-Ca2+ signaling-contraction coupling. (3) Heart level study to probe how mechanical load regulates the intact heart function. (4) Study of heart diseases to understand why/how pathological overload leads to cardiac remodeling, arrhythmias, and heart failure. These 4 parts are designed to inform and enhance one another to provide a comprehensive view on how mechano-transduction pathways work at molecular level, integrate at the cell level, and manifest to the heart’s ability to autoregulate contractility in response to mechanical load changes in health and diseases. Capability and Adaptability: The strength of my research stems from interdisciplinary approach. The history of my research shows a strong track record in developing new technologies by combining rigorous methods in physics, chemistry, and biology. In R35, I will continue developing innovative solutions and to use cutting-edge technologies to achieve the transformative research goals. Expected Outcome and Impact: The research outcome will shift the paradigm of cardiac E-C coupling to Autoregulatory Model, which will open new conceptual framework for understanding how mechanical load affects heart diseases and help identify molecular targets for developing new therapies.
意义:在每一次心跳中,心肌细胞都会产生收缩力量,将血液泵入循环。 顶住机械负荷。心肌细胞也感知负荷变化并调整收缩能力以维持 心输出量。病理条件下的超负荷会导致心律失常和心脏疾病。 心力衰竭。然而,在分子和细胞机制中仍然存在基本的知识空白。 心肌细胞的机械转导与机械应激相关心脏的治疗 到目前为止,疾病(如高血压引起的心律失常和心力衰竭、DCM、HFpEF)严重受限。 创新:以前使用无负荷心肌细胞的实验很大程度上忽略了机械负荷对心肌细胞的影响 调节心肌细胞。我们将开发一种创新的细胞凝胶-树技术来控制机械载荷 在单细胞水平上。我们的研究表明,细胞收缩过程中的机械负荷可以反馈 在兴奋-钙信号-收缩(E-C)耦合中调节三个动力系统;关闭它们 反馈环使心肌细胞能够自动调节E-C偶联以响应负荷变化。这 我们将在R35研究中探索概念创新,以了解机械载荷如何影响 心肌细胞功能与心脏病。研究计划:我研究的中心主题是阐明 中西三大动力系统如何耦合前馈和反馈控制心脏功能 动态调节智能泵。在R35中,我们将在2个R01之外扩展和深化我们的研究 机械转导机制和功能后果的多尺度系统研究。(1) 分子水平研究破译机械-化学-电转导(MCET)途径,确定关键 玩家,并决定分子机制。(2)细胞水平研究,以调查机械载荷如何 调节兴奋-钙信号-收缩耦合的动态系统。(3)心脏水平研究 探讨机械负荷如何调节完好的心功能。(4)学习了解心脏病 为什么/如何病理性超负荷导致心脏重构、心律失常和心力衰竭。这4个部分是 旨在相互通报和增强,以提供关于机械转导如何 通路在分子水平上工作,在细胞水平上整合,并表现为心脏的自动调节能力 对健康和疾病中机械负荷变化作出反应的收缩能力。能力和适应性: 我的研究优势来自于跨学科的方法。我的研究历史表明, 通过结合物理、化学和生物学的严谨方法来开发新技术的记录。 在R35,我将继续开发创新的解决方案,并使用尖端技术来实现 变革性研究目标。预期结果和影响:研究结果将改变范式 心脏E-C偶联到自体调节模型,这将为理解开辟新的概念框架 机械负荷如何影响心脏病,并帮助确定开发新疗法的分子靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ye Chen-Izu其他文献

Ye Chen-Izu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ye Chen-Izu', 18)}}的其他基金

Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
  • 批准号:
    10317392
  • 财政年份:
    2021
  • 资助金额:
    $ 110.19万
  • 项目类别:
Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
  • 批准号:
    10475252
  • 财政年份:
    2021
  • 资助金额:
    $ 110.19万
  • 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
  • 批准号:
    9917175
  • 财政年份:
    2019
  • 资助金额:
    $ 110.19万
  • 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
  • 批准号:
    10534247
  • 财政年份:
    2019
  • 资助金额:
    $ 110.19万
  • 项目类别:
MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
  • 批准号:
    10063898
  • 财政年份:
    2019
  • 资助金额:
    $ 110.19万
  • 项目类别:
MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
  • 批准号:
    10318152
  • 财政年份:
    2019
  • 资助金额:
    $ 110.19万
  • 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
  • 批准号:
    10322047
  • 财政年份:
    2019
  • 资助金额:
    $ 110.19万
  • 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
  • 批准号:
    10065520
  • 财政年份:
    2019
  • 资助金额:
    $ 110.19万
  • 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
  • 批准号:
    9118367
  • 财政年份:
    2015
  • 资助金额:
    $ 110.19万
  • 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
  • 批准号:
    9321940
  • 财政年份:
    2015
  • 资助金额:
    $ 110.19万
  • 项目类别:

相似海外基金

DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
  • 批准号:
    495592
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
  • 批准号:
    23K14885
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
  • 批准号:
    10668025
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
  • 批准号:
    23K09597
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
  • 批准号:
    514892030
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
    WBP Fellowship
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
  • 批准号:
    10638497
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
  • 批准号:
    10722857
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
  • 批准号:
    10733915
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
  • 批准号:
    10724935
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
  • 批准号:
    10727929
  • 财政年份:
    2023
  • 资助金额:
    $ 110.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了