NSF/MCB-BSF: Collaborative Research: Towards development of the structural determinants of the Glutamate receptor gating regulation by auxiliary membrane anchored proteins

NSF/MCB-BSF:合作研究:通过辅助膜锚定蛋白开发谷氨酸受体门控调节的结构决定因素

基本信息

  • 批准号:
    1818213
  • 负责人:
  • 金额:
    $ 53.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

High cognitive functions, including quantitative reasoning, learning and memory, originate in the human brain as a result of communication between complex networks of neurons connected through synapses. The key molecular element of this synaptic connection is the ionotropic glutamate receptor (iGluR), a protein in the postsynaptic neuronal membrane that conducts electrical signals to deliver messages from the presynaptic neuron. This process of neurotransmission is modulated by a variety of auxiliary proteins that bind to glutamate receptors. This project will illuminate how different auxiliary proteins interact with the glutamate receptor and with each other to initiate and modulate communication between neurons. This study enhances our knowledge of the molecular underpinnings of brain function. The research will involve undergraduate and graduate students, providing an educational environment and training opportunities at the forefront of brain research. Outreach activities involving local high schools and colleges are planned as well to promote diverse participation in STEM fields.It is increasingly recognized that the majority of proteins operate in cells within dynamically formed and re-formed complexes. This is especially important for signaling receptor proteins, such as ionotropic receptors in the brain that conduct electrical current through postsynaptic membranes to facilitate fast communication between neurons. The AMPA receptors (AMPAR) - a subtype of iGluRs - mediate the fastest excitatory neurotransmission in the mammalian brain. Correspondingly, regulation of AMPAR trafficking, localization and function is the key mechanism determining synaptic strength and plasticity that underlies high cognitive brain functions, such as learning and memory. It has been discovered recently that synaptic AMPARs function as complexes with a multitude of auxiliary proteins. This project aims to characterize molecular interactions of AMPARs with the cys-knot AMPAR modulating proteins (CKAMPs) and their interplay with the transmembrane AMPAR regulatory proteins (TARPs). A large collection of AMPAR and CKAMP mutants will be employed to identify interaction domains and specific residues involved in receptor regulation. Computational structural modeling including docking and molecular dynamics simulations will be employed to guide further determination of the protein-protein interfaces, which will be tested by electrophysiology experiments, and to generate and analyze candidate constructs for successful structure determination by cryo-EM. This collaborative effort, combining complementary approaches and continuous exchange of information and reagents, may provide the synergy needed to reach a new level of understanding of AMPAR regulation. In addition to providing fundamental insights into AMPAR gating and regulation, the results of this study will also serve as a roadmap for investigating AMPAR-mediated processes in synaptic physiology.This award was co-funded by the Division of Molecular and Cellular Biosciences, the Division of Integrative Organismal Systems, and the Rules of Life Venture Fund.This collaborative US/Israel project is supported by the US National Science Foundation and the Israeli Binational Science Foundation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高级认知功能,包括定量推理,学习和记忆,起源于人脑,是通过突触连接的复杂神经元网络之间的通信的结果。这种突触连接的关键分子元件是离子型谷氨酸受体(iGluR),其是突触后神经元膜中的蛋白质,其传导电信号以传递来自突触前神经元的信息。这一神经传递过程由多种与谷氨酸受体结合的辅助蛋白调节。该项目将阐明不同的辅助蛋白如何与谷氨酸受体相互作用,并相互启动和调节神经元之间的通信。 这项研究增强了我们对大脑功能分子基础的认识。该研究将涉及本科生和研究生,提供大脑研究前沿的教育环境和培训机会。此外,还计划开展由当地高中和大学参与的外联活动,以促进STEM领域的多元化参与。人们越来越认识到,大多数蛋白质在细胞中动态形成和重新形成的复合体中发挥作用。这对于信号受体蛋白尤其重要,例如大脑中的离子型受体,其通过突触后膜传导电流以促进神经元之间的快速通信。AMPA受体(AMPAR)-iGluRs的亚型-介导哺乳动物脑中最快的兴奋性神经传递。相应地,AMPAR运输、定位和功能的调节是决定突触强度和可塑性的关键机制,突触强度和可塑性是高认知脑功能如学习和记忆的基础。最近发现,突触AMPAR作为与许多辅助蛋白的复合物起作用。本项目旨在表征AMPAR与cys-knot AMPAR调节蛋白(CKAMP)的分子相互作用及其与跨膜AMPAR调节蛋白(TARP)的相互作用。大量的AMPAR和CKAMP突变体将被用来鉴定相互作用结构域和参与受体调节的特定残基。计算结构建模,包括对接和分子动力学模拟将用于指导蛋白质-蛋白质界面的进一步确定,这将通过电生理学实验进行测试,并生成和分析候选结构,以通过cryo-EM成功确定结构。这种合作努力,结合互补的方法和信息和试剂的持续交流,可能会提供所需的协同作用,以达到对AMPAR监管的新的理解水平。除了提供对AMPAR门控和调节的基本见解外,这项研究的结果还将作为研究突触生理学中AMPAR介导的过程的路线图。该奖项由分子和细胞生物科学部,整合有机体系统部,和生命风险基金的规则。这个合作的美国/以色列项目由美国国家科学基金会和以色列两国科学基金会支持。该奖项反映了NSF的法定使命,并已被视为通过使用基金会的知识价值和更广泛的影响审查标准进行评估,

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural and functional insights into transmembrane AMPA receptor regulatory protein complexes.
跨膜 AMPA 受体调节蛋白复合物的结构和功能见解。
  • DOI:
    10.1085/jgp.201812264
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Twomey,EdwardC;Yelshanskaya,MariaV;Sobolevsky,AlexanderI
  • 通讯作者:
    Sobolevsky,AlexanderI
AMPA Receptor Noncompetitive Inhibitors Occupy a Promiscuous Binding Site
  • DOI:
    10.1021/acschemneuro.9b00344
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Narangoda, Chamali;Sakipov, Serzhan N.;Kurnikova, Maria G.
  • 通讯作者:
    Kurnikova, Maria G.
Dynamical Mechanisms of Glutamate Receptor Gating and Sub-Conductance
谷氨酸受体门控和亚电导的动力学机制
  • DOI:
    10.1016/j.bpj.2019.11.3151
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kurnikova, Maria G.;Sakipov, Serzhan;Kottke, Christopher;Narangoda, Chamali;Scaranto, Jessica
  • 通讯作者:
    Scaranto, Jessica
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Kurnikova其他文献

Modeling and Mutation of NHERF1 Dimerization Domains
  • DOI:
    10.1016/j.bpj.2009.12.332
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tatyana Mamonova;Bin Wang;Maria Kurnikova;Peter A. Friedman
  • 通讯作者:
    Peter A. Friedman
Mechanism of the pH-Triggered Formation of Membrane-Competent State of the Diphtheria Toxin Translocation Domain Revealed by Simulations and Experiment
  • DOI:
    10.1016/j.bpj.2010.12.1336
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jose C. Flores-Canales;Igor Kurnikov;Nikolay Simakov;Alexander Kyrychenko;Mykola V. Rodnin;Alexey S. Ladokhin;Maria Kurnikova
  • 通讯作者:
    Maria Kurnikova
An Empirical Scoring Function for the Transmembrane Helical Protein Assembly
  • DOI:
    10.1016/j.bpj.2011.11.2576
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Jose C. Flores;Igor Kurnikov;Maria Kurnikova
  • 通讯作者:
    Maria Kurnikova
Theoretical Investigation of Structure and Gating Mechanisms in Glutamate Receptor Ion Channels
  • DOI:
    10.1016/j.bpj.2009.12.2849
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael J. Yonkunas;Maria Kurnikova
  • 通讯作者:
    Maria Kurnikova
Computational Studies of the Molecular Mechanisms Responsible for Ca<sup>2+</sup> Permeation and Mg<sup>2+</sup> Block of NMDA Receptors
  • DOI:
    10.1016/j.bpj.2011.11.3340
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Lea Veras;Igor Kurnikov;Jon W. Johnson;Maria Kurnikova
  • 通讯作者:
    Maria Kurnikova

Maria Kurnikova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Kurnikova', 18)}}的其他基金

Collaborative Research: Geometric Elucidation of Supramolecular Assembly and Allostery with Experimental Validation
合作研究:超分子组装和变构的几何阐明与实验验证
  • 批准号:
    1563291
  • 财政年份:
    2016
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

MCB1促进胆囊癌化疗耐药和免疫逃逸的机制及临床应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
单节合型胆红素(MCB)在胆结石生成上的作用
  • 批准号:
    39070790
  • 批准年份:
    1990
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
  • 批准号:
    2324615
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: Probing cellular surplus in single bacterial cells to understand concerted controls of cell growth and adaptation
NSF/MCB-BSF:探测单个细菌细胞中的细胞盈余,以了解细胞生长和适应的协调控制
  • 批准号:
    2309595
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: De novo design of minimalistic light-switchable protein binding domains
NSF/MCB-BSF:简约光可切换蛋白结合域的从头设计
  • 批准号:
    2306190
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
  • 批准号:
    2324614
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
  • 批准号:
    2207688
  • 财政年份:
    2022
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
NSF-MCB/BSF - Composition and Stoichiometry of mRNA-protein Complexes Leading to Nuclear Export and Gene Expression Regulation
NSF-MCB/BSF - 导致核输出和基因表达调控的 mRNA-蛋白质复合物的组成和化学计量
  • 批准号:
    2140761
  • 财政年份:
    2022
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Continuing Grant
NSF/MCB-BSF: Direct force measurements and analysis of intrinsically disordered proteins
NSF/MCB-BSF:本质无序蛋白质的直接力测量和分析
  • 批准号:
    2113302
  • 财政年份:
    2021
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Continuing Grant
NSF/MCB-BSF: Modeling the mechanisms that define Notch signal strength using in-vivo synthetic and quantitative biology
NSF/MCB-BSF:使用体内合成和定量生物学对定义 Notch 信号强度的机制进行建模
  • 批准号:
    2114950
  • 财政年份:
    2021
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Continuing Grant
NSF/MCB-BSF: Mechanism of liquid-liquid phase separation in pathway-specific transcription regulation
NSF/MCB-BSF:途径特异性转录调控中的液-液相分离机制
  • 批准号:
    2110314
  • 财政年份:
    2021
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Continuing Grant
NSF/MCB-BSF: Sentinels: Viral First Responder Cells (VFRCs) for COVID-19 and Future Rapidly Emerging Infectious Diseases
NSF/MCB-BSF:哨兵:针对 COVID-19 和未来快速出现的传染病的病毒第一反应细胞 (VFRC)
  • 批准号:
    2116037
  • 财政年份:
    2021
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了