Collaborative Research: Geometric Elucidation of Supramolecular Assembly and Allostery with Experimental Validation
合作研究:超分子组装和变构的几何阐明与实验验证
基本信息
- 批准号:1563291
- 负责人:
- 金额:$ 33.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A wide variety of supramolecular structures in nature and engineering--from viruses to protein crystals to nanomaterials--assemble rapidly and spontaneously at room temperature with remarkable efficacy. Many assembly processes incorporate the phenomenon of allostery, where intermolecular interaction is controlled by binding events at a remote site of one of the interacting molecules. Despite increasingly sophisticated in vivo, in vitro and in silico experimental efforts, assembly processes are poorly understood. A more mathematically rigorous, and mechanistically intuitive theory is crucial not only to predict and engineer assembly and allostery but also to guide further time-consuming experimentation. Deeper understanding of assembly, allostery, and the role of the latter in the former will help control infectious diseases, assemble viral vectors for gene therapy, design drugs and engineer materials at the nanoscale.It is natural to expect that geometry and algorithmic complexity would play a key role in understanding the mechanisms underlying assembly, since the assembly process must crucially depend on the intricate shape and volume of the so-called assembly configuration space in which the molecules move relative to each other as they assemble. Conversely, it is also natural to expect that new mathematics, algorithms and software will result from the quest to understand intricate molecular configuration spaces and perform computations over them. The project's goals include new theorems and algorithms, their hybridization with prevailing methods, and opensource software. Progress is expected on long open problems in rigidity, configuration spaces, distance geometry; algorithms for efficient atlasing, search, sampling, and volume computation for high dimensional and topologically intricate configuration spaces; hybrid methods that combine the new algorithms with prevailing energy-based Monte Carlo simulation; and most significantly, concrete experimental validation of predictions. The project combines expertise in geometry and algorithms, experimental structural biology, and computational chemistry, and is well-suited for bringing the three communities together, for providing interdisciplinary training for research students as well as for outreach to schools and the public.
自然界和工程中的各种超分子结构-从病毒到蛋白质晶体再到纳米材料-在室温下快速自发地组装,具有显着的功效。 许多组装过程包含变构现象,其中分子间相互作用由相互作用分子之一的远程位点处的结合事件控制。 尽管越来越复杂的体内,体外和计算机实验的努力,组装过程知之甚少。 一个更严格的数学,和机械直观的理论是至关重要的,不仅预测和工程组装和变构,而且指导进一步耗时的实验。更深入地了解组装、变构以及后者在前者中的作用将有助于控制传染病、组装用于基因治疗的病毒载体、设计药物和纳米级工程材料。人们自然会期望几何和算法复杂性将在理解组装机制方面发挥关键作用,因为组装过程必须关键地取决于所谓的组装构型空间的复杂形状和体积,其中分子在组装时相对于彼此移动。 相反,人们也很自然地期望,新的数学、算法和软件将来自于对复杂分子构型空间的理解和对它们的计算。 该项目的目标包括新的定理和算法,它们与流行方法的混合,以及开源软件。进展预计长期开放的问题,在刚性,配置空间,距离几何;算法的高效atlasing,搜索,采样和体积计算的高维和拓扑复杂的配置空间;混合方法,联合收割机结合新的算法与现行的基于能量的蒙特卡罗模拟;最重要的是,具体的实验验证的预测。 该项目结合了几何和算法,实验结构生物学和计算化学方面的专业知识,非常适合将三个社区聚集在一起,为研究生提供跨学科培训以及与学校和公众的联系。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AMPA Receptor Noncompetitive Inhibitors Occupy a Promiscuous Binding Site
- DOI:10.1021/acschemneuro.9b00344
- 发表时间:2019-11-01
- 期刊:
- 影响因子:5
- 作者:Narangoda, Chamali;Sakipov, Serzhan N.;Kurnikova, Maria G.
- 通讯作者:Kurnikova, Maria G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Kurnikova其他文献
Modeling and Mutation of NHERF1 Dimerization Domains
- DOI:
10.1016/j.bpj.2009.12.332 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Tatyana Mamonova;Bin Wang;Maria Kurnikova;Peter A. Friedman - 通讯作者:
Peter A. Friedman
Mechanism of the pH-Triggered Formation of Membrane-Competent State of the Diphtheria Toxin Translocation Domain Revealed by Simulations and Experiment
- DOI:
10.1016/j.bpj.2010.12.1336 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Jose C. Flores-Canales;Igor Kurnikov;Nikolay Simakov;Alexander Kyrychenko;Mykola V. Rodnin;Alexey S. Ladokhin;Maria Kurnikova - 通讯作者:
Maria Kurnikova
An Empirical Scoring Function for the Transmembrane Helical Protein Assembly
- DOI:
10.1016/j.bpj.2011.11.2576 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Jose C. Flores;Igor Kurnikov;Maria Kurnikova - 通讯作者:
Maria Kurnikova
Computational Studies of the Molecular Mechanisms Responsible for Ca<sup>2+</sup> Permeation and Mg<sup>2+</sup> Block of NMDA Receptors
- DOI:
10.1016/j.bpj.2011.11.3340 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Lea Veras;Igor Kurnikov;Jon W. Johnson;Maria Kurnikova - 通讯作者:
Maria Kurnikova
Theoretical Investigation of Structure and Gating Mechanisms in Glutamate Receptor Ion Channels
- DOI:
10.1016/j.bpj.2009.12.2849 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Michael J. Yonkunas;Maria Kurnikova - 通讯作者:
Maria Kurnikova
Maria Kurnikova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Kurnikova', 18)}}的其他基金
NSF/MCB-BSF: Collaborative Research: Towards development of the structural determinants of the Glutamate receptor gating regulation by auxiliary membrane anchored proteins
NSF/MCB-BSF:合作研究:通过辅助膜锚定蛋白开发谷氨酸受体门控调节的结构决定因素
- 批准号:
1818213 - 财政年份:2018
- 资助金额:
$ 33.2万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350374 - 财政年份:2024
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350373 - 财政年份:2024
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
- 批准号:
2409888 - 财政年份:2023
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
- 批准号:
2212130 - 财政年份:2022
- 资助金额:
$ 33.2万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223871 - 财政年份:2022
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2211916 - 财政年份:2022
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
$ 33.2万 - 项目类别:
Standard Grant