Analysis and Recovery of High-Dimensional Data with Low-Dimensional Structures
低维结构高维数据的分析与恢复
基本信息
- 批准号:1818751
- 负责人:
- 金额:$ 21.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nowadays massive, high dimensional data sets arise in many fields of contemporary science and introduce new challenges. In machine learning, the well-known curse of dimensionality implies that, in order to achieve a fixed accuracy in prediction, a large number of training data is required. In image and signal recovery, a large number of measurements are needed to recover a high-dimensional vector, unless further assumptions are made. Fortunately, many real-world data sets exhibit low-dimensional geometric structures due to rich local regularities, global symmetries, repetitive patterns, or redundant sampling. The PI will explore low-dimensional geometric structures in data sets for feature extraction, data prediction and signal recovery. Dimension reduction and function approximation given a set of training data are of central interest in machine learning and data science. When data are concentrated near a low-dimensional set or the function has low complexity, the PI will develop new and fast machine learning algorithms whose performance depends on the complexity of the data or the function, instead of the dimension of the data sets. In image and signal recovery, an interesting problem is to recover a high-dimensional, sparse vector from a small number of structured measurements. This problem is challenging since sensing matrices arising from imaging and signal processing are often deterministic, structured and highly coherent (some columns are highly correlated), which does not allow one to apply standard theory and algorithms. The PI will utilize the structures of sensing matrices, develop efficient algorithms, and prove performance guarantees. The theory and fast algorithms developed in this project can be applied to a wide range of problems in data compression, image analysis, computer vision, and signal recovery. High dimensional data arise in many fields of contemporary science and introduce new challenges. Fortunately, many real-world data sets exhibit low-dimensional geometric structures. This project focuses on exploiting these low-dimensional geometric structures of the data sets, and developing novel methods for dimension reduction, function approximation, and signal recovery. The PI will work on two sets of problems. In the first one, a data set is modeled as point clouds in a D-dimensional space but concentrating near a d-dimensional manifold, where d is much smaller than D. She plans to exploit the geometric structures of the data sets to build low-dimensional representations of data and approximate functions on data. Function approximations in Euclidean spaces have been well studied; however, classical estimators converge to the true function extremely slowly in high dimensions. When data are concentrated near a d-dimensional manifold, or the function has low complexity, the PI aims at constructing estimators that converge to the true function at a faster rate depending on the intrinsic dimension d. The proposed approach is based on the PI's recent work on adaptive geometric approximations for intrinsically low-dimensional data, where a data-driven, fast and robust scheme was developed to construct low-dimensional geometric approximations of data. The second set of problems arise from imaging and signal processing where the goal is to recover a high-dimensional, sparse vector from its noisy low-frequency Fourier coefficients. It is related with super-resolution in imaging, as the missing high-frequency Fourier coefficients correspond to the high-resolution components of the vector. Many existing methods fail since some columns in the sensing matrix are highly correlated. The PI will utilize the structure of the sensing matrix, develop efficient algorithms and prove performance guarantees. A mathematical theory will be developed to explain the fundamental difficulty of super-resolution, as well as the resolution limit of superior subspace methods, such as MUSIC, ESPRIT, and the matrix pencil method.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,海量、高维的数据集出现在当代科学的许多领域,并带来了新的挑战。在机器学习中,众所周知的维度灾难意味着,为了实现固定的预测精度,需要大量的训练数据。在图像和信号恢复中,除非做出进一步的假设,否则需要进行大量的测量来恢复高维向量。幸运的是,由于丰富的局部规则性、全局对称性、重复模式或冗余采样,许多真实世界的数据集显示出低维几何结构。PI将探索数据集中的低维几何结构,用于特征提取、数据预测和信号恢复。给定一组训练数据的降维和函数逼近是机器学习和数据科学中的核心问题。当数据集中在低维集合附近或函数的复杂度较低时,PI将开发新的快速机器学习算法,其性能取决于数据或函数的复杂度,而不是数据集的维度。在图像和信号恢复中,一个有趣的问题是从少量的结构化测量中恢复高维的稀疏向量。这一问题具有挑战性,因为成像和信号处理中产生的传感矩阵通常是确定性的、结构化的和高度相干的(一些列高度相关),这使得人们不能应用标准的理论和算法。PI将利用感知矩阵的结构,开发高效的算法,并证明性能保证。该项目开发的理论和快速算法可广泛应用于数据压缩、图像分析、计算机视觉和信号恢复等领域。高维数据出现在当代科学的许多领域,并带来了新的挑战。幸运的是,许多真实世界的数据集展示了低维的几何结构。这个项目的重点是利用数据集的这些低维几何结构,并开发新的降维、函数逼近和信号恢复方法。PI将解决两组问题。在第一种方法中,数据集被建模为D维空间中的点云,但集中在d维流形附近,其中d比D小得多。她计划利用数据集的几何结构来构建数据的低维表示和对数据的近似函数。欧氏空间中的函数逼近已经得到了很好的研究;然而,在高维空间中,经典估计收敛到真实函数的速度非常慢。当数据集中在d维流形附近,或者函数的复杂度较低时,PI的目标是构造估计器,该估计器依赖于固有维度d以更快的速度收敛到真实函数。该方法基于PI最近关于本质低维数据的自适应几何逼近的工作,其中数据驱动的、快速的和健壮的方案被用来构造数据的低维几何逼近。第二组问题来自成像和信号处理,目标是从噪声的低频傅立叶系数中恢复高维稀疏向量。它与成像中的超分辨率有关,因为缺失的高频傅立叶系数对应于矢量的高分辨率分量。由于传感矩阵中的一些列高度相关,许多现有方法都失败了。PI将利用感知矩阵的结构,开发高效的算法并证明性能保证。将开发一个数学理论来解释超分辨率的基本困难,以及更优子空间方法的分辨率限制,如MUSIC、ESPRIT和矩阵铅笔方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale regression on unknown manifolds
- DOI:10.3934/mine.2022028
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Wenjing Liao;M. Maggioni;S. Vigogna
- 通讯作者:Wenjing Liao;M. Maggioni;S. Vigogna
Sensor Calibration for Off-the-Grid Spectral Estimation
- DOI:10.1016/j.acha.2018.08.003
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:Yonina C. Eldar;Wenjing Liao;Sui Tang
- 通讯作者:Yonina C. Eldar;Wenjing Liao;Sui Tang
Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds
- DOI:
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Minshuo Chen;Haoming Jiang;Wenjing Liao;T. Zhao
- 通讯作者:Minshuo Chen;Haoming Jiang;Wenjing Liao;T. Zhao
Super-Resolution Limit of the ESPRIT Algorithm
- DOI:10.1109/tit.2020.2974174
- 发表时间:2020-07-01
- 期刊:
- 影响因子:2.5
- 作者:Li, Weilin;Liao, Wenjing;Fannjiang, Albert
- 通讯作者:Fannjiang, Albert
IDENT: Identifying Differential Equations with Numerical Time Evolution
- DOI:10.1007/s10915-020-01404-9
- 发表时间:2019-04
- 期刊:
- 影响因子:2.5
- 作者:S. Kang;Wenjing Liao;Yingjie Liu
- 通讯作者:S. Kang;Wenjing Liao;Yingjie Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenjing Liao其他文献
WeakIdent: Weak formulation for Identifying Differential Equations using Narrow-fit and Trimming
WeakIdent:使用窄拟合和修剪识别微分方程的弱公式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.1
- 作者:
Mengyi Tang;Wenjing Liao;R. Kuske;S. Kang - 通讯作者:
S. Kang
Fast-track synthesis of DNA-functionalized gold nanoparticles for biosensing applications
用于生物传感应用的DNA功能化金纳米粒子的快速合成
- DOI:
10.1016/j.trac.2024.117724 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:12.000
- 作者:
Zi Ye;Wenjing Liao;Zhaojia Deng;Lingfeng Wang;Bei Wen;Dapeng Zhang;Hailin Wang;Wenjing Xie;Hanyong Peng - 通讯作者:
Hanyong Peng
An Adaptive Skew Insensitive Join Algorithm for Large Scale Data Analytics
用于大规模数据分析的自适应倾斜不敏感连接算法
- DOI:
10.1007/978-3-319-11116-2_44 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Wenjing Liao;Tengjiao Wang;Hongyan Li;Dongqing Yang;Zhen Qiu;Kai Lei - 通讯作者:
Kai Lei
An automatic denoising method for NMR spectroscopy based on low-rank Hankel model
- DOI:
10.1109/TIM.2021.3109743 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Tianyu Qiu;Wenjing Liao;Yihui Huang;Jinyu Wu;Di Guo;Dongbao Liu;Xin Wang;Jian-Feng Cai;Bingwen Hu;Xiaobo Qu - 通讯作者:
Xiaobo Qu
Learning Functions Varying along a Central Subspace
学习函数沿着中心子空间变化
- DOI:
10.1137/23m1557751 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hao Liu;Wenjing Liao - 通讯作者:
Wenjing Liao
Wenjing Liao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenjing Liao', 18)}}的其他基金
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 21.54万 - 项目类别:
Continuing Grant
Deep Neural Networks for Structured Data: Regression, Distribution Estimation, and Optimal Transport
用于结构化数据的深度神经网络:回归、分布估计和最优传输
- 批准号:
2012652 - 财政年份:2020
- 资助金额:
$ 21.54万 - 项目类别:
Standard Grant
相似海外基金
A multi-dimensional evaluation of therapeutic intervention-induced functional recovery for unilateral spatial neglect model animal
单侧空间忽视模型动物治疗干预诱导功能恢复的多维评价
- 批准号:
23K10445 - 财政年份:2023
- 资助金额:
$ 21.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EFRI ELiS: Three-Dimensional Printable BioReactors For Sustainable Rare Earth Metal Recovery
EFRI ELiS:用于可持续稀土金属回收的三维可打印生物反应器
- 批准号:
2223735 - 财政年份:2022
- 资助金额:
$ 21.54万 - 项目类别:
Standard Grant
Helium recovery from LNG waste stream using two-dimensional nanostructured MXene membranes
使用二维纳米结构 MXene 膜从 LNG 废物流中回收氦气
- 批准号:
409987259 - 财政年份:2019
- 资助金额:
$ 21.54万 - 项目类别:
Research Grants
CIF: Small: Structured High-dimensional Data Recovery from Phaseless Measurements
CIF:小型:从无相测量中恢复结构化高维数据
- 批准号:
1815101 - 财政年份:2018
- 资助金额:
$ 21.54万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Methods for Optimal Polynomial Recovery of High-Dimensional Systems from Sparse and Noisy Data
合作研究:从稀疏和噪声数据中恢复高维系统最优多项式的数学方法
- 批准号:
1620027 - 财政年份:2016
- 资助金额:
$ 21.54万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Methods for Optimal Polynomial Recovery of High-Dimensional Systems from Sparse and Noisy Data
合作研究:从稀疏和噪声数据中恢复高维系统最优多项式的数学方法
- 批准号:
1620280 - 财政年份:2016
- 资助金额:
$ 21.54万 - 项目类别:
Standard Grant
CDS&E-MSS: Recovery of High-Dimensional Structured Functions
CDS
- 批准号:
1622134 - 财政年份:2016
- 资助金额:
$ 21.54万 - 项目类别:
Standard Grant
Increasing the use of paralyzed arm by rehabilitation system based on the 3 dimensional motor recovery model
基于3维运动恢复模型的康复系统增加瘫痪手臂的使用
- 批准号:
16H03200 - 财政年份:2016
- 资助金额:
$ 21.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multi-dimensional Security Problems of Vulnerable State - Haiti: Towards a Recovery from the Grate Earthquake and the Building of a Resilient State
脆弱国家的多维安全问题——海地:从大地震中恢复并建设有复原力的国家
- 批准号:
15K01889 - 财政年份:2015
- 资助金额:
$ 21.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularization for High Dimensional Inference and Sparse Recovery
高维推理和稀疏恢复的正则化
- 批准号:
1205296 - 财政年份:2012
- 资助金额:
$ 21.54万 - 项目类别:
Continuing Grant