CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks

职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络

基本信息

  • 批准号:
    2145167
  • 负责人:
  • 金额:
    $ 48.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). In general, scientific and engineering data can be high-dimensional, but in many practical applications, data exhibit low-dimensional features due to local regularities, global symmetries, or repetitive patterns. This project aims to develop new theoretical and computational tools to exploit low-dimensional structures in data science. The overall goal is to develop improved computational algorithms for machine learning with high-dimensional datasets that have additional structure. Machine learning research will also be integrated with data science education, including a bridge program that aims to help prepare undergraduate students with diverse backgrounds for careers in both industry and academia.This project aims to make fundamental mathematical, statistical, and computational advances in analysis of high-dimensional data with structures. Research directions include manifold learning, identification of partial differential equations, and a nonparametric estimation theory for neural networks. This work focuses on three sets of related but distinct questions. The first set is about efficient approximation of functions supported on and near a low-dimensional manifold. Efficient algorithms will be developed to build local linear approximations of the manifold and polynomial approximations of the function. A theoretical goal is to prove that the function estimation error converges to zero as the sample size grows with a fast rate depending on the intrinsic dimension of the manifold. The second set is on robust PDE identification from noisy data. The PI will combine tools in machine learning and numerical PDEs to explore noisy data and robustly identify the underlying PDE and dynamics. This project will address denoising, recovery of spatially varying parameters, and kernel identification in nonlocal equations. The third set of questions concerns nonparametric estimation theory for neural networks for learning operators between infinite dimensional function spaces. The work aims to provide an upper bound for the error in estimation of Lipschitz operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。一般来说,科学和工程数据可以是高维的,但在许多实际应用中,数据表现出低维特征,由于局部对称性,全局对称性或重复模式。该项目旨在开发新的理论和计算工具,以利用数据科学中的低维结构。总体目标是开发改进的计算算法,用于具有额外结构的高维数据集的机器学习。机器学习研究还将与数据科学教育相结合,包括一个桥梁项目,旨在帮助具有不同背景的本科生为工业和学术界的职业生涯做好准备。该项目旨在在分析具有结构的高维数据方面取得基础数学,统计和计算方面的进步。研究方向包括流形学习,偏微分方程的识别和神经网络的非参数估计理论。这项工作的重点是三组相关但不同的问题。第一个集合是关于低维流形上和附近支持的函数的有效逼近。将开发有效的算法来建立流形的局部线性近似和函数的多项式近似。一个理论目标是证明函数估计误差收敛到零的样本大小增长的速度取决于流形的内在维度的快速。第二组是从噪声数据中进行鲁棒PDE识别。PI将结合机器学习和数值PDE中的联合收割机工具,以探索噪声数据并鲁棒地识别潜在的PDE和动态。这个项目将解决去噪,恢复空间变化的参数,并在非局部方程核识别。第三组问题涉及神经网络学习无限维函数空间之间的算子的非参数估计理论。这项工作旨在为Lipschitz算子的估计误差提供一个上限。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WeakIdent: Weak formulation for identifying differential equation using narrow-fit and trimming
WeakIdent:使用窄拟合和修剪识别微分方程的弱公式
  • DOI:
    10.1016/j.jcp.2023.112069
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Tang, Mengyi;Liao, Wenjing;Kuske, Rachel;Kang, Sung Ha
  • 通讯作者:
    Kang, Sung Ha
Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT)
变系数微分方程辨识的群投影子空间追踪 (GP-IDENT)
  • DOI:
    10.1016/j.jcp.2023.112526
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    He, Yuchen;Kang, Sung Ha;Liao, Wenjing;Liu, Hao;Liu, Yingjie
  • 通讯作者:
    Liu, Yingjie
Robust Identification of Differential Equations by Numerical Techniques from a Single Set of Noisy Observation
  • DOI:
    10.1137/20m134513x
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuchen He;S. Kang;Wenjing Liao;Hao Liu;Yingjie Liu
  • 通讯作者:
    Yuchen He;S. Kang;Wenjing Liao;Hao Liu;Yingjie Liu
Multiscale regression on unknown manifolds
  • DOI:
    10.3934/mine.2022028
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenjing Liao;M. Maggioni;S. Vigogna
  • 通讯作者:
    Wenjing Liao;M. Maggioni;S. Vigogna
Deep nonparametric estimation of intrinsic data structures by chart autoencoders: Generalization error and robustness
通过图表自动编码器对内在数据结构进行深度非参数估计:泛化误差和鲁棒性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenjing Liao其他文献

WeakIdent: Weak formulation for Identifying Differential Equations using Narrow-fit and Trimming
WeakIdent:使用窄拟合和修剪识别微分方程的弱公式
Fast-track synthesis of DNA-functionalized gold nanoparticles for biosensing applications
用于生物传感应用的DNA功能化金纳米粒子的快速合成
  • DOI:
    10.1016/j.trac.2024.117724
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    12.000
  • 作者:
    Zi Ye;Wenjing Liao;Zhaojia Deng;Lingfeng Wang;Bei Wen;Dapeng Zhang;Hailin Wang;Wenjing Xie;Hanyong Peng
  • 通讯作者:
    Hanyong Peng
An Adaptive Skew Insensitive Join Algorithm for Large Scale Data Analytics
用于大规模数据分析的自适应倾斜不敏感连接算法
  • DOI:
    10.1007/978-3-319-11116-2_44
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenjing Liao;Tengjiao Wang;Hongyan Li;Dongqing Yang;Zhen Qiu;Kai Lei
  • 通讯作者:
    Kai Lei
An automatic denoising method for NMR spectroscopy based on low-rank Hankel model
  • DOI:
    10.1109/TIM.2021.3109743
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Tianyu Qiu;Wenjing Liao;Yihui Huang;Jinyu Wu;Di Guo;Dongbao Liu;Xin Wang;Jian-Feng Cai;Bingwen Hu;Xiaobo Qu
  • 通讯作者:
    Xiaobo Qu
Learning Functions Varying along a Central Subspace
学习函数沿着中心子空间变化
  • DOI:
    10.1137/23m1557751
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Liu;Wenjing Liao
  • 通讯作者:
    Wenjing Liao

Wenjing Liao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenjing Liao', 18)}}的其他基金

Deep Neural Networks for Structured Data: Regression, Distribution Estimation, and Optimal Transport
用于结构化数据的深度神经网络:回归、分布估计和最优传输
  • 批准号:
    2012652
  • 财政年份:
    2020
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Standard Grant
Analysis and Recovery of High-Dimensional Data with Low-Dimensional Structures
低维结构高维数据的分析与恢复
  • 批准号:
    1818751
  • 财政年份:
    2018
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Continuing Grant
Digital photonics exploiting optical nonlinearities of low-dimensional nano-materials
利用低维纳米材料光学非线性的数字光子学
  • 批准号:
    23H00174
  • 财政年份:
    2023
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Standard Grant
CAS: Exploiting Spin in Photo-induced Chemistry: Fundamental Explorations of High-spin and Low-spin Transition Metals in Long-lived Charge Separated States and Oxidative Catalysis
CAS:利用光诱导化学中的自旋:长寿命电荷分离态和氧化催化中高自旋和低自旋过渡金属的基础探索
  • 批准号:
    2153862
  • 财政年份:
    2022
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155097
  • 财政年份:
    2022
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Standard Grant
Low power explosive detection exploiting the time domain
利用时域的低功率爆炸物检测
  • 批准号:
    NS220100020
  • 财政年份:
    2022
  • 资助金额:
    $ 48.14万
  • 项目类别:
    National Intelligence and Security Discovery Research Grants
Creation of novel solid-state ionics exploiting low-temperature sublattice melting accompanied by pseudorotation of hydride complexes
利用伴随氢化物赝旋转的低温亚晶格熔化创建新型固态离子
  • 批准号:
    20K20438
  • 财政年份:
    2019
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
CAREER: Exploiting Many-Particle Physics for Low-Energy Nanoelectronics
职业:利用多粒子物理学实现低能纳米电子学
  • 批准号:
    1752401
  • 财政年份:
    2018
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Standard Grant
CAREER: Exploiting the Low/Medium Frequency (LF/MF) Radio Band for Ionospheric Remote Sensing
职业:利用低/中频 (LF/MF) 无线电频段进行电离层遥感
  • 批准号:
    1653114
  • 财政年份:
    2017
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
  • 批准号:
    1663870
  • 财政年份:
    2016
  • 资助金额:
    $ 48.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了