Simulation and Numerical Analysis in Elastodynamics

弹性动力学模拟和数值分析

基本信息

  • 批准号:
    1818867
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The numerical simulation of transient elastic waves has the overall goal of developing robust and reliable computational tools to handle the study of deformation and stress in solids. The results of this project could impact a wide range of applications, including inverse problems in geophysics (seismic imaging with applications in earthquake simulation and oil exploration), magnetic resonance elastography for medical applications, control of electromechanical systems (the use of solid deformation to control electric fields or viceversa), and fracture detection in solids. The understanding of the computational approximations to complex model equations describing the interaction of varied physical phenomena (solid deformation, electromagnetism, acoustic propagation, and thermal diffusion) is of great importance to assess the quality and validity of the proposed simulations.The project focuses on the numerical analysis and computation of transient elastic waves, including their interaction with acoustic waves. The proposal addresses multiple physical models where elastodynamics is involved, with an emphasis on viscoelastic behavior, piezoelectric effects, and fully coupled thermoelasticity. The project proposes to unify and simplify the treatment, theoretical and numerical, of several of these models. The numerical approximation will be handled using Finite Element Methods and Hybridizable Discontinuous Galerkin schemes for the space variables, and high order time-stepping tools disguised as Convolution Quadrature methods. The expected outcomes of this proposed research range from stability and convergence analysis for the fully discrete methods to practical implementation in three dimensional geometries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
瞬态弹性波的数值模拟的总体目标是开发强大而可靠的计算工具来处理固体中变形和应力的研究。该项目的结果可能会影响广泛的应用,包括地球物理学中的逆问题(地震成像在地震模拟和石油勘探中的应用),用于医疗应用的磁共振弹性成像,机电系统的控制(使用固体变形来控制电场,反之亦然),以及固体中的裂缝检测。理解描述各种物理现象(固体变形、电磁、声传播和热扩散)相互作用的复杂模型方程的计算近似对于评估所提出的模拟的质量和有效性非常重要。该项目侧重于瞬态弹性波的数值分析和计算,包括它们与声波的相互作用。该提案涉及弹性动力学的多个物理模型,重点是粘弹性行为,压电效应和完全耦合的热弹性。该项目建议统一和简化处理,理论和数值,其中几个模型。将使用有限元方法和空间变量的可混合不连续Galerkin格式以及伪装为卷积求积方法的高阶时间步进工具来处理数值近似。这项研究的预期成果范围从完全离散方法的稳定性和收敛性分析到三维几何形状的实际实施。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of models for viscoelastic wave propagation
  • DOI:
    10.21042/amns.2018.1.00006
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Thomas S. Brown;Shukai Du;H. Eruslu;F. Sayas
  • 通讯作者:
    Thomas S. Brown;Shukai Du;H. Eruslu;F. Sayas
A note on devising HDG+ projections on polyhedral elements
关于设计多面体单元 HDG 投影的说明
  • DOI:
    10.1090/mcom/3573
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Du, Shukai;Sayas, Francisco-Javier
  • 通讯作者:
    Sayas, Francisco-Javier
Target signatures for thin surfaces
薄表面的目标签名
  • DOI:
    10.1088/1361-6420/ac4154
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Cakoni, Fioralba;Monk, Peter;Zhang, Yangwen
  • 通讯作者:
    Zhang, Yangwen
A Unified Error Analysis of Hybridizable Discontinuous Galerkin Methods for the Static Maxwell Equations
  • DOI:
    10.1137/19m1290966
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shukai Du;F. Sayas
  • 通讯作者:
    Shukai Du;F. Sayas
Analysis and Approximations of Dirichlet Boundary Control of Stokes Flows in the Energy Space
  • DOI:
    10.1137/21m1406799
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Gong;M. Mateos;J. Singler;Yangwen Zhang
  • 通讯作者:
    W. Gong;M. Mateos;J. Singler;Yangwen Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Monk其他文献

An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity
  • DOI:
    10.1007/s10915-024-02643-w
  • 发表时间:
    2024-09-11
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Gang Chen;Peter Monk;Yangwen Zhang
  • 通讯作者:
    Yangwen Zhang
Adolescent-to-Parent Abuse
青少年对父母的虐待
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Cottrell;Peter Monk
  • 通讯作者:
    Peter Monk
Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space
  • DOI:
    10.1007/s10915-013-9741-9
  • 发表时间:
    2013-06-09
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Roland Griesmaier;Peter Monk
  • 通讯作者:
    Peter Monk
The linear sampling method for sparse small aperture data
稀疏小孔径数据的线性采样方法
  • DOI:
    10.1080/00036811.2015.1065317
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Yukun Guo;Peter Monk;David Colton
  • 通讯作者:
    David Colton
Characteristics of IT Innovation
IT创新的特点

Peter Monk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Monk', 18)}}的其他基金

Collaborative Research: Integrated Optoelectronic Optimization of Thin-Film Solar Cells with Light-Trapping Structures
合作研究:具有光捕获结构的薄膜太阳能电池的集成光电优化
  • 批准号:
    2011603
  • 财政年份:
    2020
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Adhesion to host cell membrane microdomains in cornea as an antimicrobial target to prevent corneal ulceration
粘附角膜中的宿主细胞膜微区作为抗菌靶点以预防角膜溃疡
  • 批准号:
    MR/S004688/1
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Research Grant
Adhesion to host cell membrane microdomains in cornea as an antimicrobial target to prevent corneal ulceration
粘附角膜中的宿主细胞膜微区作为抗菌靶点以预防角膜溃疡
  • 批准号:
    MC_PC_17226
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Intramural
OP: COLLABORATIVE RESEARCH: Integrated Simulation of Non-homogeneous Thin-film Photovoltaic Devices
OP:协作研究:非均质薄膜光伏器件的集成模拟
  • 批准号:
    1619904
  • 财政年份:
    2016
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Rsch: Adaptive Hybridized DG Methods for Acoustic and Electromagnetic Scattering
协作 Rsch:声学和电磁散射的自适应混合 DG 方法
  • 批准号:
    1216620
  • 财政年份:
    2012
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
SOLAR Collaborative: Multiplasmonic Light Harvesting for Thin Film Solar Cells
SOLAR Collaborative:薄膜太阳能电池的多等离子体光收集
  • 批准号:
    1125590
  • 财政年份:
    2011
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
  • 批准号:
    9722854
  • 财政年份:
    1997
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences/GIG: GIG-Applied Mathematics with Internship
数学科学/GIG:GIG 应用数学实习
  • 批准号:
    9631287
  • 财政年份:
    1996
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9205242
  • 财政年份:
    1992
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant

相似海外基金

Real-Time & Generalizable Flood Simulation Emulator using Numerical Analysis and Machine Learning
即时的
  • 批准号:
    23KJ1685
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Coupled analysis of measurement using 3D CT and numerical simulation for iron ore high temperature complex dynamic behavior
铁矿石高温复杂动态行为3D CT测量与数值模拟耦合分析
  • 批准号:
    23K17810
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
  • 批准号:
    RGPIN-2022-04720
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Discovery Grants Program - Individual
Direct Numerical Simulation and Analysis of Turbulent Pipe Flow at High Reynolds Numbers
高雷诺数湍流管流的直接数值模拟与分析
  • 批准号:
    2031650
  • 财政年份:
    2020
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Sophistication of numerical simulation of Tsunami wave with granular solids such as sea ice floes and risk analysis using computational intelligence
海啸波与海浮冰等粒状固体的数值模拟的复杂性以及使用计算智能的风险分析
  • 批准号:
    19K04630
  • 财政年份:
    2019
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of earthquake rupture process at the Nankai Trough by integrated method of fault material analysis and numerical simulation
断层材料分析与数值模拟综合方法评价南海海槽地震破裂过程
  • 批准号:
    19K04039
  • 财政年份:
    2019
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of production mechanisms of the axion dark matter based on numerical simulation
基于数值模拟的轴子暗物质产生机制分析
  • 批准号:
    18K03640
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: DNA Packing of Bacteriophages: Liquid Crystal Modeling through Analysis, Knot Theory and Numerical Simulation.
合作研究:噬菌体的 DNA 包装:通过分析、结理论和数值模拟进行液晶建模。
  • 批准号:
    1817156
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DNA Packing of Bacteriophages: Liquid Crystal Modeling through Analysis, Knot Theory and Numerical Simulation
合作研究:噬菌体的 DNA 包装:通过分析、结理论和数值模拟进行液晶建模
  • 批准号:
    1816740
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
A numerical model for the analysis and simulation of electro-active paper
电活性纸分析与模拟的数值模型
  • 批准号:
    393020662
  • 财政年份:
    2017
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了