High-Order Accurate Partitioned Algorithms for Fluid-Structure Interactions and Conjugate-Heat Transfer
流固耦合和共轭传热的高阶精确划分算法
基本信息
- 批准号:1818926
- 负责人:
- 金额:$ 38.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluid-structure interaction (FSI) problems are important in many areas of engineering and applied science, such as modeling of blood flow, flow-induced vibrations of structures, and wave energy devices, among others, and there is significant interest in numerical simulation tools for such problems. Conjugate heat transfer (CHT) also plays an important role in many FSI simulations, such as the cooling of turbine blades, heat exchangers, nuclear reactors, semiconductor devices, and more. In this project the PIs aim to build upon their recent achievements to develop stable partitioned algorithms for new classes of FSI problems that also include CHT effects. The PIs will address the development of high-order accurate schemes for these FSI-CHT problems. High-order schemes are especially useful for wave-dominated regimes such as high-Reynolds number turbulent flows and propagation of elastic waves. At the same time, achieving high-order accurate interface coupling approaches for partitioned schemes presents numerous intellectual and numerical challenges.The proposed research is concerned with the development and analysis of new high-order accurate algorithms for a wide range of complex and challenging FSI-CHT problems, such as those involving incompressible or compressible flows, with possible free surfaces, coupled to rigid bodies and deforming bulk solids with heat transfer. These new partitioned algorithms will use novel interface coupling conditions to treat both the FSI and CHT interface conditions. The FSI interface conditions will be based on principles we have developed for our Added-Mass Partitioned (AMP)schemes. The CHT domain coupling will extend the recently devised CHAMP interface conditions that combine ideas from optimized Schwarz iterations for domain-decomposition with compatibility interface conditions. The resulting interface couplings will provide schemes that remain provably stable for a wide range of material parameters (e.g. for light solids when added-mass effects are large). A primary focus will be on algorithms for incompressible flows and incompressible solids. New high-order accurate fractional-step solvers will be developed for both incompressible elastic solids and the incompressible Navier-Stokes equations. Complex moving and deforming geometry will be handled with deforming composite grids. Fast, efficient and scalable multigrid algorithms and automatic mesh generation algorithms will be developed as key components of the FSI-CHT solvers. The new high-order accurate and stable AMP algorithms will complement the ones already developed by the PIs and collaborators for FSI problems, and together they will provide a suite of solvers readily available in open-source software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体-结构相互作用(FSI)问题在工程和应用科学的许多领域都很重要,例如血液流动的建模、结构的流动引起的振动和波能装置等,并且对这些问题的数值模拟工具有很大的兴趣。共轭传热(CHT)在许多FSI模拟中也起着重要作用,例如涡轮叶片,热交换器,核反应堆,半导体器件等的冷却。在这个项目中,pi的目标是在他们最近的成就的基础上,为包括CHT效应的新型FSI问题开发稳定的分区算法。pi将解决这些FSI-CHT问题的高阶精确方案的开发。高阶格式对于高雷诺数湍流和弹性波的传播等以波为主导的情况特别有用。同时,实现高阶精确的界面耦合方法对分割方案提出了许多智力和数值挑战。提出的研究涉及开发和分析新的高阶精确算法,用于广泛的复杂和具有挑战性的FSI-CHT问题,例如涉及不可压缩或可压缩流动的问题,可能有自由表面,耦合到刚体和具有传热的变形散装固体。这些新的分区算法将使用新的界面耦合条件来处理FSI和CHT界面条件。FSI界面条件将基于我们为我们的附加质量分区(AMP)方案开发的原则。CHT域耦合将扩展最近设计的CHAMP接口条件,该条件结合了优化的Schwarz迭代用于域分解的思想和兼容性接口条件。由此产生的界面耦合将提供在广泛的材料参数范围内(例如,当附加质量效应很大时,对于轻固体)保持可证明的稳定性的方案。主要的焦点将放在不可压缩流和不可压缩固体的算法上。对于不可压缩的弹性固体和不可压缩的Navier-Stokes方程,将开发新的高阶精确分步求解器。复杂的移动和变形几何将处理变形复合网格。快速、高效和可扩展的多网格算法和自动网格生成算法将被开发为FSI-CHT求解器的关键组件。新的高阶精确和稳定的AMP算法将补充pi和合作者已经开发的用于FSI问题的算法,并且它们将一起提供一套易于在开源软件中使用的求解器。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fourth-order accurate fractional-step IMEX schemes for the incompressible Navier–Stokes equations on moving overlapping grids
移动重叠网格上不可压缩纳维斯托克斯方程的四阶精确分数阶 IMEX 方案
- DOI:10.1016/j.cma.2020.113040
- 发表时间:2020
- 期刊:
- 影响因子:7.2
- 作者:Meng, F.;Banks, J.W.;Henshaw, W.D.;Schwendeman, D.W.
- 通讯作者:Schwendeman, D.W.
A Stable Added-Mass Partitioned (AMP) Algorithm for Elastic Solids and Incompressible Flow: Model Problem Analysis
弹性固体和不可压缩流的稳定附加质量分配 (AMP) 算法:模型问题分析
- DOI:10.1137/18m1232358
- 发表时间:2019
- 期刊:
- 影响因子:3.1
- 作者:Serino, Daniel A.;Banks, Jeffrey W.;Henshaw, William D.;Schwendeman, Donald W.
- 通讯作者:Schwendeman, Donald W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Henshaw其他文献
Multigrid with Nonstandard Coarse-Level Operators and Coarsening Factors
- DOI:
10.1007/s10915-023-02103-x - 发表时间:
2023-01-31 - 期刊:
- 影响因子:3.300
- 作者:
Chang Liu;William Henshaw - 通讯作者:
William Henshaw
William Henshaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Henshaw', 18)}}的其他基金
High-Order Added-Mass Partitioned Algorithms for Fluid-Structure Interaction Problems
流固耦合问题的高阶附加质量划分算法
- 批准号:
1519934 - 财政年份:2015
- 资助金额:
$ 38.4万 - 项目类别:
Continuing Grant
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
- 批准号:
24K01797 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
- 批准号:
24K16962 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
- 批准号:
24K20786 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Research Grant
Developing an accurate non-Newtonian surface rheology model
开发精确的非牛顿表面流变模型
- 批准号:
EP/Y031644/1 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Research Grant
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
- 批准号:
23K23485 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
- 批准号:
24K20903 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
- 批准号:
2421137 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
- 批准号:
2339868 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Continuing Grant