Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
基本信息
- 批准号:BB/Y513763/1
- 负责人:
- 金额:$ 31.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The world's rapid population growth and climate change pose challenges to sustainable food production. Agricultural crop production has long relied on Process-based models (PBMs) to forecast yields and understand how plant physiological processes interact with the environment, influencing crop growth and development. However, the PBMs suffer limitations in making accurate predictions due to complex weather/plant interactions. This is especially true for extreme events (drought, heat waves), pests, diseases, and stresses not accounted for. Process-based models' predictive abilities are hindered by uncertainties in structure, inputs, and parameters, exceeding observed yield variations over time/space.Machine Learning (ML) offers quick crop yield prediction by learning from data, but it's often a black box needing explanations. Integrating PBMs and ML has shown promise in improving predictions. Challenges remain in effective integration: choosing the right ML for accurate simulation, balancing interpretability and uncertainty. Environmental impact assessment is often overlooked.Building on our existing foundations, this partnership brings together leading researchers in agri-environment sciences, crop modelling from Germany and computer science (big data/machine learning/AI) from UK, and aims to develop an innovative AI framework by synergising process-based and machine learning models for accurate and explainable crop yield prediction coupling with environmental impact assessment. The overarching aim is to build and foster a long-term partnership between UK and Germany's top research groups to address the call theme- AI in sustainable agriculture and food and provides the added value to our ongoing research in climate-smart agriculture solutions. To achieve this, we will conduct a series of research activities including feasibility study, staff exchanges/early career researchers (ECRs) visits, facility and data access, workshops, and joint publications/funding applications. The integration of AI with agricultural modeling represents an emerging paradigm that pushes the boundaries of agricultural research. It not only offers improved crop yield predictions and climate change impact mitigation but also opens up new avenues for understanding crop dynamics, resource optimization, and sustainable farming practices. The proposed approach has the potential to be applied at different scales, ranging from individual farm fields to regional and global levels. This scalability and generalization make the AI-driven synergy suitable for addressing complex agricultural challenges and adapting to diverse environmental conditions. It has the capacity to revolutionize agriculture, leading to more efficient, sustainable, and resilient food production systems.This research offers potential benefits to farmers, consumers, policymakers, and the environment. Improved predictions will enhance agricultural decision-making, increase food security, promote climate change adaptation and mitigation, and optimize resource utilization. Additionally, the research will advance scientific knowledge and benefit industry and academic institutions.
世界人口的迅速增长和气候变化对可持续粮食生产构成挑战。农业作物生产长期以来一直依赖基于过程的模型(PBM)来预测产量,并了解植物生理过程如何与环境相互作用,从而影响作物生长和发育。然而,由于复杂的天气/植物相互作用,PBM在进行准确预测方面受到限制。对于极端事件(干旱、热浪)、虫害、疾病和未考虑的压力尤其如此。基于过程的模型的预测能力受到结构、输入和参数的不确定性的阻碍,超过了观测到的产量随时间/空间的变化。机器学习(ML)通过从数据中学习来提供快速的作物产量预测,但它通常是一个需要解释的黑匣子。集成PBM和ML在改善预测方面表现出了希望。在有效集成方面仍然存在挑战:选择正确的ML进行准确的模拟,平衡可解释性和不确定性。在我们现有的基础上,这一合作伙伴关系汇集了德国农业环境科学、作物建模和英国计算机科学(大数据/机器学习/人工智能)领域的领先研究人员,旨在通过协同基于过程和机器学习的模型,开发一个创新的人工智能框架,以实现准确和可解释的作物产量预测,并结合环境影响评估。总体目标是建立和促进英国和德国顶级研究小组之间的长期合作伙伴关系,以解决呼叫主题-可持续农业和食品中的人工智能,并为我们正在进行的气候智能农业解决方案研究提供附加值。为此,我们将开展一系列研究活动,包括可行性研究、人员交流/早期职业研究人员(ECR)访问、设施和数据访问、工作坊以及联合出版物/资金申请。人工智能与农业建模的整合代表了一种新兴的范式,推动了农业研究的边界。它不仅提供了更好的作物产量预测和气候变化影响缓解,还为了解作物动态,资源优化和可持续农业实践开辟了新的途径。所提出的方法有可能在不同的规模上应用,从个别农田到区域和全球各级。这种可扩展性和通用性使人工智能驱动的协同作用适合于解决复杂的农业挑战和适应不同的环境条件。它有能力彻底改变农业,导致更有效,可持续和有弹性的粮食生产系统。这项研究为农民,消费者,政策制定者和环境提供了潜在的好处。改进预测将加强农业决策,提高粮食安全,促进适应和减缓气候变化,并优化资源利用。此外,这项研究将推动科学知识的发展,使工业和学术机构受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liangxiu Han其他文献
Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI
使用结构 MRI 进行阿尔茨海默病诊断的双重关注多实例深度学习
- DOI:
10.1109/tmi.2021.3077079 - 发表时间:
2021-05 - 期刊:
- 影响因子:10.6
- 作者:
Wenyong Zhu;Liang Sun;Jiashuang Huang;Liangxiu Han;Daoqiang Zhang - 通讯作者:
Daoqiang Zhang
Analyzing Gene Expression Imaging Data in Developmental Biology
分析发育生物学中的基因表达成像数据
- DOI:
10.1002/9781118540343.ch16 - 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
Liangxiu Han;Jano van Hemert;I. Overton;Paolo Besana;R. Baldock - 通讯作者:
R. Baldock
Supervised Hyperalignment for Multisubject fMRI Data Alignment
用于多主体 fMRI 数据对齐的监督超对齐
- DOI:
10.1109/tcds.2020.2965981 - 发表时间:
2020-01 - 期刊:
- 影响因子:5
- 作者:
Muhammad Yousefnezhad;Aless;ro Selvitella;Liangxiu Han;Daoqiang Zhang - 通讯作者:
Daoqiang Zhang
The self-adaptation to dynamic failures for efficient virtual organization formations in grid computing context
网格计算环境下高效虚拟组织形成的动态故障自适应
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Liangxiu Han - 通讯作者:
Liangxiu Han
The Location Privacy Preserving of Social Network Based on RCCAM Access Control
基于RCCAM访问控制的社交网络位置隐私保护
- DOI:
10.1080/02564602.2018.1507767 - 发表时间:
2018 - 期刊:
- 影响因子:2.4
- 作者:
Xueqin Zhang;Qianru Zhou;C. Gu;Liangxiu Han - 通讯作者:
Liangxiu Han
Liangxiu Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liangxiu Han', 18)}}的其他基金
EYE-SCREEN-4-DPN: Development of an innovative Intelligent EYE imaging solution for SCREENing of Diabetic Peripheral Neuropathy
EYE-SCREEN-4-DPN:开发创新的智能眼部成像解决方案,用于筛查糖尿病周围神经病变
- 批准号:
EP/X013707/1 - 财政年份:2023
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
UK-China Agritech Challenge: CropDoc - Precision Crop Disease Management for Farm Productivity and Food Security
中英农业科技挑战赛:CropDoc - 精准作物病害管理,提高农业生产力和粮食安全
- 批准号:
BB/S020969/1 - 财政年份:2019
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
EPIC: An automated diagnostic tool for Potato Late Blight disease detection from images
EPIC:一种从图像检测马铃薯晚疫病的自动化诊断工具
- 批准号:
BB/R019983/1 - 财政年份:2018
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
AGILE: A Cloud Approach to Automatic Gene Expression Pattern Recognition and Annotation Over Large-Scale Images
AGILE:大规模图像上自动基因表达模式识别和注释的云方法
- 批准号:
BB/K004077/1 - 财政年份:2012
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
- 批准号:12375145
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
多臂Bandit process中的Bayes非参数方法
- 批准号:71771089
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: CAS: A light-based, energy-generating, carbon removal process
SBIR 第一阶段:CAS:基于光的能量产生碳去除过程
- 批准号:
2335596 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Collaborative R&D
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
An innovative UK-based thermoplastic carbon/titanium bicycle frame production process that can reduce lead time by 90% and carbon emissions by 70%
An%20创新%20英国%20热塑性%20碳/钛%20自行车%20框架%20生产%20工艺%20that%20can%20减少%20铅%20时间%20by%2090%%20和%20碳%20排放%20by%2070%
- 批准号:
10092387 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Collaborative R&D
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
EU-Funded
Predicting process behaviour of bio based compostables (Procomp)
预测生物基堆肥的过程行为 (Procomp)
- 批准号:
10089828 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Collaborative R&D
CAREER: Hydrogeologic implications of permafrost thaw - Developing a process-based understanding of biophysical controls and educational tools for rural communities
职业:永久冻土融化的水文地质影响 - 为农村社区建立对生物物理控制和教育工具的基于过程的理解
- 批准号:
2235308 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Continuing Grant
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Continuing Grant
A Process-Based Framework for Open Innovation with Social Media Data
基于流程的社交媒体数据开放式创新框架
- 批准号:
DP230102657 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Discovery Projects
Research on the developmental process of social cognition based on understanding similarities between self and others: A longitudinal study in the first twelve years of life
基于理解自我与他人相似性的社会认知发展过程研究——生命前十二年的纵向研究
- 批准号:
23H01035 - 财政年份:2023
- 资助金额:
$ 31.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)