SBIR Phase I: Improving Accuracy and Reducing Scan Time of Dynamic Brain PET
SBIR 第一阶段:提高动态脑 PET 的准确性并减少扫描时间
基本信息
- 批准号:1819453
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This SBIR Phase I Project will productize a quantitative data processing technology in dynamic positron emission tomography (PET). Dynamic PET's distinction from its static counterpart is in the fact that it collects time-dependent tracer concentration data. It is a highly sensitive and accurate way of functional and molecular imaging of protein targets such as biomarkers of Alzheimer's disease, Parkinson's disease, or brain trauma. Unfortunately, dynamic PET is rarely used in clinic because of long imaging time and complex processing. The technology to be developed in this proposal will shorten the required imaging time and simplify the analysis, allowing for accurate and reliable imaging of disease biomarkers for aiding drug development, clinical diagnostics, and treatment monitoring. The proposed analytic workflow will be offered as a cloud-based service that can be used by the customers to analyze new or historical PET datasets. In order to overcome the established practice of relying on less accurate and informative static PET imaging, the grant recipients plan to conduct a thorough validation of the new technology using a dedicated physical phantom and human subject images acquired in the past. The largest impact of the new technology is expected in medical research and drug development. The accepted practice of analyzing dynamic PET datasets involves reconstruction of the parameters of implied compartment model describing the tracer biochemistry, which involves several accuracy-degrading approximations and requires lengthy acquisition. The alternative approach proposed in this project relies on decomposing the dynamic PET image sequences using a combination of several processing techniques that incorporate the essential features of tracer pharmacokinetics without making explicit assumptions about the model parameters or about the underlying anatomy. The key part of the proposed methodology is factor analysis of dynamic structures, a non-negative matrix decomposition technique with successful past applications in radionuclide image analysis. The result of the workflow is a 3D concentration of tissues that exhibit specific-binding of the radiotracer. In order to validate the quantitative accuracy of the approach, the researchers will build and image a dedicated physical phantom capable of producing overlapping distributions with different tracer dynamics. In order to validate the scan-time reduction claims, the new workflow will be used to analyze existing dynamic PET human subject datasets using increasingly shorter input time windows.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该SBIR一期项目将生产动态正电子发射断层扫描(PET)中的定量数据处理技术。动态PET与其静态对应物的区别在于它收集时间依赖性示踪剂浓度数据。它是一种高度灵敏和准确的蛋白质靶点功能和分子成像方法,如阿尔茨海默病,帕金森病或脑创伤的生物标志物。动态PET成像时间长、处理复杂,临床应用较少。该提案中开发的技术将缩短所需的成像时间并简化分析,从而实现疾病生物标志物的准确可靠成像,以帮助药物开发,临床诊断和治疗监测。拟议的分析工作流程将作为基于云的服务提供,客户可使用该服务分析新的或历史PET数据集。为了克服依赖于不太准确和信息丰富的静态PET成像的既定做法,赠款接受者计划使用专用物理体模和过去获得的人类受试者图像对新技术进行彻底验证。新技术的最大影响预计是在医学研究和药物开发方面。分析动态PET数据集的公认实践涉及重建描述示踪剂生物化学的隐含隔室模型的参数,这涉及几个降低准确性的近似值,并且需要长时间的采集。本项目中提出的替代方法依赖于使用几种处理技术的组合来分解动态PET图像序列,这些处理技术结合了示踪剂药代动力学的基本特征,而无需对模型参数或基础解剖结构进行明确假设。所提出的方法的关键部分是因子分析的动态结构,非负矩阵分解技术与成功的过去应用在放射性核素图像分析。工作流程的结果是显示放射性示踪剂特异性结合的组织的3D浓度。为了验证该方法的定量准确性,研究人员将构建并成像一个专用的物理模型,该模型能够产生具有不同示踪剂动力学的重叠分布。为了验证扫描时间减少的说法,新的工作流程将用于分析现有的动态PET人体受试者数据集,使用越来越短的输入时间窗口。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grant Gullberg其他文献
Grant Gullberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Improving indoor agriculture grow light efficiency with adaptive light shaping
SBIR 第一阶段:通过自适应光整形提高室内农业种植光效率
- 批准号:
2304339 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
- 批准号:
2220811 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Improving farmer safety and grain storage efficiencies via an autonomous grain management and extraction robot
SBIR 第二阶段:通过自主粮食管理和提取机器人提高农民安全和粮食储存效率
- 批准号:
2321441 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Improving Anion Exchange Membrane Water Electrolyzers via Novel Electrode Geometry
SBIR 第一阶段:通过新型电极几何结构改进阴离子交换膜水电解槽
- 批准号:
2223148 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Improving farmer safety and grain storage efficiencies via a remote-controlled grain management and extraction robot
SBIR 第一阶段:通过远程控制粮食管理和提取机器人提高农民安全和粮食储存效率
- 批准号:
2111555 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Microbiome for improving salt stress tolerance in crops
SBIR 第一阶段:提高作物耐盐胁迫能力的微生物组
- 批准号:
2035899 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Improving Fertility Patient-Provider Communication with a Personalized Natural Language Processing Platform
SBIR 第一阶段:通过个性化自然语言处理平台改善生育患者与提供者的沟通
- 批准号:
2124872 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Improving Diagnosis of Epilepsy by Applying Network Analytics to Non-Seizure Scalp EEG Data
SBIR 第一阶段:通过将网络分析应用于非癫痫发作头皮脑电图数据来改善癫痫的诊断
- 批准号:
2112011 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Development of a Multimodal Interface for improving independence of Blind and Visually-Impaired people
SBIR 第二阶段:开发多模式界面以提高盲人和视障人士的独立性
- 批准号:
2025772 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Development of Safety Accessory for Improving Performance and Minimizing Complications of Manual Ventilation (COVID-19)
SBIR 第一阶段:开发安全附件以提高手动通气性能并最大程度地减少并发症(COVID-19)
- 批准号:
2025203 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant














{{item.name}}会员




