CDS&E: Structure-Aware Representation Learning Using Deep Networks
CDS
基本信息
- 批准号:1820827
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, deep neural networks have been widely applied to analyze Big Data produced in various fields of science, industry and society. In the area of signal processing, deep Convolutional Neural Network (CNN) is one of the most successful computational models, with numerous applications including visual object recognition, object detection and localization. Despite the wide success of deep networks, the data representation computed by these models does not necessarily reflect the geometric information in the input data in an understandable way; a gap remains between the remarkable performance of deep models and the interpretability of such performance. In particular, deep networks trained from enormous amounts of data typically have no specific structures in the model parameters, which also leads to significant redundancy in the model. This project will investigate the mathematical foundation for imposing appropriate structures in deep networks, aiming at more analyzable and efficient network models with theoretically guaranteed performance. The results will have direct applications in various machine learning tasks, improving the accuracy, computational efficiency and interpretability of existing models. The theoretical analysis to be developed will deepen the mathematical understanding of deep networks, which is important for the next generation of computational tools for machine learning. Students engaged in the project will be trained in an interdisciplinary environment of mathematics and electrical engineering, developing skills in both analysis and software implementation, which benefits their future careers in academia or industry. The project will also train future mathematicians and electrical engineers through course development, especially courses on machine learning and image sciences with public online repositories. The project explores the new possibility of representation learning using deep networks, a tool with immense potential to address key challenges in today's Big Data analysis and artificial intelligence. The goal of the project is to develop novel mathematical analysis of the deep Convolutional Neural Network (CNN) model, as well as innovative designs of CNNs with appropriate structures based on the analysis. Specifically, the PIs will study: (1) the geometric structures in the channels of the convolutional layers, with which the CNN representations can collaboratively and explicitly encode geometric information in the data with improved interpretability and robustness; (2) the spatial structures of the convolutional filters, by which the filter regularity can be analytically imposed so that the CNN representations can be provably stable to input variations; and (3) efficient software implementation, which transfers the theoretical results into applications such as object detection and image segmentation in computer vision. The PIs will use tools from harmonic analysis and approximation theory to address the following open problems in the field: the removal of redundancy in trained CNN filters in a principled way while avoiding under-fitting, the more efficient learning of invariant representations with respect to geometrical transforms in the data, and the theoretical guarantees of the deep representations learned by an adaptive network that is trained from data. The new mathematical understanding will guide the design of deep networks to achieve better performance, in accuracy and computational speed, and better interpretability of the learned data representation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,深度神经网络被广泛应用于分析科学、工业和社会各个领域产生的大数据。在信号处理领域,深度卷积神经网络(CNN)是最成功的计算模型之一,具有许多应用,包括视觉对象识别,对象检测和定位。尽管深度网络取得了广泛的成功,但这些模型计算的数据表示并不一定以可理解的方式反映输入数据中的几何信息;在深度模型的卓越性能和这种性能的可解释性之间仍然存在差距。特别是,从大量数据中训练的深度网络通常在模型参数中没有特定的结构,这也导致了模型中的显著冗余。该项目将研究在深度网络中施加适当结构的数学基础,旨在获得更具分析性和效率的网络模型,并在理论上保证性能。研究结果将直接应用于各种机器学习任务,提高现有模型的准确性、计算效率和可解释性。有待开发的理论分析将加深对深度网络的数学理解,这对下一代机器学习计算工具非常重要。参与该项目的学生将在数学和电气工程的跨学科环境中接受培训,培养分析和软件实施方面的技能,这将有利于他们未来在学术界或工业界的职业生涯。该项目还将通过课程开发,特别是关于机器学习和图像科学的公共在线知识库课程,培训未来的数学家和电气工程师。该项目探索了使用深度网络进行表征学习的新可能性,深度网络是一种具有巨大潜力的工具,可以解决当今大数据分析和人工智能的关键挑战。该项目的目标是开发深度卷积神经网络(CNN)模型的新型数学分析,以及基于分析的具有适当结构的CNN的创新设计。具体来说,PI将研究:(1)卷积层通道中的几何结构,CNN表示可以协同和显式地对数据中的几何信息进行编码,提高可解释性和鲁棒性;(2)卷积滤波器的空间结构,通过其可以分析地施加滤波器规则性,使得CNN表示可以证明对输入变化是稳定的;以及(3)高效的软件实现,其将理论结果转化为应用,例如计算机视觉中的目标检测和图像分割。PI将使用谐波分析和近似理论的工具来解决该领域的以下开放问题:以原则性的方式去除训练CNN滤波器中的冗余,同时避免欠拟合,更有效地学习数据中几何变换的不变表示,以及通过从数据中训练的自适应网络学习的深度表示的理论保证。新的数学理解将指导深度网络的设计,以实现更好的性能,在准确性和计算速度,以及更好的可解释性的学习数据表示。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Dictionary Approach to Domain-Invariant Learning in Deep Networks
- DOI:
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Ze Wang;Xiuyuan Cheng;G. Sapiro;Qiang Qiu
- 通讯作者:Ze Wang;Xiuyuan Cheng;G. Sapiro;Qiang Qiu
RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks
RotDCF:旋转等变深度网络的卷积滤波器的分解
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Cheng, Xiuyuan;Qiu, Qiang;Calderbank, Robert;Sapiro, Guillermo
- 通讯作者:Sapiro, Guillermo
Graph Convolution with Low-rank Learnable Local Filters
- DOI:
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Xiuyuan Cheng;Zichen Miao;Qiang Qiu
- 通讯作者:Xiuyuan Cheng;Zichen Miao;Qiang Qiu
Scaling-Translation-Equivariant Networks with Decomposed Convolutional Filters
- DOI:
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Wei Zhu;Qiang Qiu;Robert Calderbank;G. Sapiro;Xiuyuan Cheng
- 通讯作者:Wei Zhu;Qiang Qiu;Robert Calderbank;G. Sapiro;Xiuyuan Cheng
Butterfly-Net: Optimal Function Representation Based on Convolutional Neural Networks
- DOI:10.4208/cicp.oa-2020-0214
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Yingzhou Li;Xiuyuan Cheng;Jianfeng Lu
- 通讯作者:Yingzhou Li;Xiuyuan Cheng;Jianfeng Lu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuyuan Cheng其他文献
Cluster-independent multiscale marker identification in single-cell RNA-seq data using localized marker detector (LMD)
使用局部标记检测器(LMD)在单细胞 RNA-seq 数据中进行独立于聚类的多尺度标记识别
- DOI:
10.1038/s42003-025-08485-y - 发表时间:
2025-07-16 - 期刊:
- 影响因子:5.100
- 作者:
Ruiqi Li;Rihao Qu;Fabio Parisi;Francesco Strino;Hainan Lam;Jay S. Stanley;Xiuyuan Cheng;Peggy Myung;Yuval Kluger - 通讯作者:
Yuval Kluger
Police Text Analysis: Topic Modeling and Spatial Relative Density Estimation
警察文本分析:主题建模和空间相对密度估计
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sarah Huestis;Xiuyuan Cheng;Yao Xie - 通讯作者:
Yao Xie
The emG/em-invariant graph Laplacian Part I: Convergence rate and eigendecomposition
emG/em-不变图拉普拉斯算子第一部分:收敛速度和特征分解
- DOI:
10.1016/j.acha.2024.101637 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:3.200
- 作者:
Eitan Rosen;Paulina Hoyos;Xiuyuan Cheng;Joe Kileel;Yoel Shkolnisky - 通讯作者:
Yoel Shkolnisky
Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise
双随机归一化图拉普拉斯:收敛于流形拉普拉斯算子以及对异常噪声的鲁棒性
- DOI:
10.48550/arxiv.2206.11386 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xiuyuan Cheng;Boris Landa - 通讯作者:
Boris Landa
The emG/em-invariant graph Laplacian part II: Diffusion maps
emG/em-不变图拉普拉斯算子第二部分:扩散映射
- DOI:
10.1016/j.acha.2024.101695 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:3.200
- 作者:
Eitan Rosen;Xiuyuan Cheng;Yoel Shkolnisky - 通讯作者:
Yoel Shkolnisky
Xiuyuan Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuyuan Cheng', 18)}}的其他基金
CAREER: Learning of graph diffusion and transport from high dimensional data with low-dimensional structures
职业:从具有低维结构的高维数据中学习图扩散和传输
- 批准号:
2237842 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
NSF-BSF: Group Invariant Graph Laplacians: Theory and Computations
NSF-BSF:群不变图拉普拉斯算子:理论与计算
- 批准号:
2007040 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Geometric Analysis and Computation for Generative Models
协作研究:生成模型的几何分析和计算
- 批准号:
1818945 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Structure-aware models and algorithms for reconstructing the evolution and ancestral states of genes and genomes
用于重建基因和基因组的进化和祖先状态的结构感知模型和算法
- 批准号:
RGPIN-2017-05552 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
CRII: III: Structure-aware Graph Compressing: From Algorithms to Applications
CRII:III:结构感知图压缩:从算法到应用程序
- 批准号:
2308206 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRII: III: Structure-aware Graph Compressing: From Algorithms to Applications
CRII:III:结构感知图压缩:从算法到应用程序
- 批准号:
2104720 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Structure-aware models and algorithms for reconstructing the evolution and ancestral states of genes and genomes
用于重建基因和基因组的进化和祖先状态的结构感知模型和算法
- 批准号:
RGPIN-2017-05552 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Structure-aware models and algorithms for reconstructing the evolution and ancestral states of genes and genomes
用于重建基因和基因组的进化和祖先状态的结构感知模型和算法
- 批准号:
RGPIN-2017-05552 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Structure-aware models and algorithms for reconstructing the evolution and ancestral states of genes and genomes
用于重建基因和基因组的进化和祖先状态的结构感知模型和算法
- 批准号:
RGPIN-2017-05552 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Structure-aware models and algorithms for reconstructing the evolution and ancestral states of genes and genomes
用于重建基因和基因组的进化和祖先状态的结构感知模型和算法
- 批准号:
RGPIN-2017-05552 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Structure-aware models and algorithms for reconstructing the evolution and ancestral states of genes and genomes
用于重建基因和基因组的进化和祖先状态的结构感知模型和算法
- 批准号:
RGPIN-2017-05552 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Power-Aware Cache-Based Structure Design
基于节能感知缓存的结构设计
- 批准号:
386377-2009 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research and Development Grants
Power-Aware Cache-Based Structure Design
基于节能感知缓存的结构设计
- 批准号:
386377-2009 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research and Development Grants