CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
基本信息
- 批准号:1821183
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We now live in the era of data deluge. The sheer volume of the data to be processed, together with the growing complexity of statistical models and the increasingly distributed nature of the data sources, creates new challenges to modern statistics theory. Standard machine learning methods are no longer able to accommodate the computational requirements. They need to be re-designed or adapted, which calls for a new generation of design and theory of scalable learning algorithms for massive data. This project aims to provide a collection of state-of-the-art nonparametric learning tools for big data analysis, which can be directly used by scientists and practitioners and have beneficial impacts on various fields such as biomedicine, health-care, defense and security, and information technology. The deliverables of this project include easy-to-use software packages that will be thoroughly evaluated using a range of application examples. They will directly help scientists to explore and analyze complex data sets. Due to storage and computational bottlenecks, traditional statistical inferential procedures originally designed for a single machine are no longer applicable to modern large datasets. This project aims to design new scalable learning algorithms of wide-ranging nonparametric models for data that are distributed across a large number of multi-core computational nodes, or in a fashion of random sketching if only a single machine is available. The computational limits of these new algorithms will be examined from a statistical perspective. For example, in the divide-and-conquer setup, the number of deployed machines can be viewed as a simple proxy for computing cost. The project aims to establish a sharp upper bound for this number: when the number is below this bound, statistical optimality (in terms of nonparametric estimation or testing) is achievable; otherwise, statistical optimality becomes impossible. Related questions will also be addressed in the randomized sketching method in terms of the minimal number of random projections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们现在生活在数据泛滥的时代。待处理的数据量之大,加上统计模型日益复杂和数据源日益分散,给现代统计理论带来了新的挑战。标准的机器学习方法不再能够满足计算需求。它们需要重新设计或调整,这就需要新一代的大数据可扩展学习算法的设计和理论。该项目旨在为大数据分析提供一系列最先进的非参数学习工具,这些工具可以直接由科学家和从业人员使用,并对生物医学,医疗保健,国防和安全以及信息技术等各个领域产生有益的影响。该项目的交付成果包括易于使用的软件包,将使用一系列应用实例对这些软件包进行全面评估。它们将直接帮助科学家探索和分析复杂的数据集。由于存储和计算的瓶颈,传统的统计推断过程最初是为单机设计的,不再适用于现代大型数据集。该项目旨在为分布在大量多核计算节点上的数据设计新的可扩展的非参数模型学习算法,或者如果只有一台机器可用,则以随机草图的方式进行。这些新算法的计算限制将从统计的角度进行检查。例如,在分而治之的设置中,部署的机器数量可以被视为计算成本的简单代理。该项目旨在为这个数字建立一个明确的上限:当这个数字低于这个界限时,统计最优性(在非参数估计或检验方面)是可以实现的;否则,统计最优性变得不可能。相关问题也将在随机草图方法中以最小数量的随机投影来解决。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning in/for blockchain: Future and challenges
- DOI:10.1002/cjs.11623
- 发表时间:2021-06-05
- 期刊:
- 影响因子:0.6
- 作者:Chen, Fang;Wan, Hong;Cheng, Guang
- 通讯作者:Cheng, Guang
High Dimensional Inference in Partially Linear Models
- DOI:10.2139/ssrn.3015397
- 发表时间:2017-08
- 期刊:
- 影响因子:0
- 作者:Ying Zhu;Zhuqing Yu;Guang Cheng
- 通讯作者:Ying Zhu;Zhuqing Yu;Guang Cheng
Online Batch Decision-Making with High-Dimensional Covariates
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:ChiHua Wang;Guang Cheng
- 通讯作者:ChiHua Wang;Guang Cheng
Gaussian approximation for high dimensional vector under physical dependence
- DOI:10.3150/17-bej939
- 发表时间:2018-11
- 期刊:
- 影响因子:1.5
- 作者:Xianyang Zhang;Guang Cheng
- 通讯作者:Xianyang Zhang;Guang Cheng
Early Stopping for Nonparametric Testing
非参数测试的提前停止
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Liu, M.;Cheng, G.
- 通讯作者:Cheng, G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qifan Song其他文献
Support Recovery in Sparse PCA with Incomplete Data
支持稀疏PCA中不完整数据的恢复
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hanbyul Lee;Qifan Song;Jean Honorio - 通讯作者:
Jean Honorio
Support Recovery in Sparse PCA with Non-Random Missing Data
支持稀疏 PCA 中非随机缺失数据的恢复
- DOI:
10.48550/arxiv.2302.01535 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hanbyul Lee;Qifan Song;J. Honorio - 通讯作者:
J. Honorio
Optimal False Discovery Control of Minimax Estimator
极小极大估计器的最优错误发现控制
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Qifan Song;Guang Cheng - 通讯作者:
Guang Cheng
A New Paradigm for Generative Adversarial Networks Based on Randomized Decision Rules
基于随机决策规则的生成对抗网络新范式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.4
- 作者:
Sehwan Kim;Qifan Song;Faming Liang - 通讯作者:
Faming Liang
Matrix Completion from General Deterministic Sampling Patterns
一般确定性采样模式的矩阵补全
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hanbyul Lee;R. Mazumder;Qifan Song;J. Honorio - 通讯作者:
J. Honorio
Qifan Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qifan Song', 18)}}的其他基金
High Dimensional Semiparametric Estimation and Inferences
高维半参数估计和推论
- 批准号:
1811812 - 财政年份:2018
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant














{{item.name}}会员




