High Dimensional Semiparametric Estimation and Inferences

高维半参数估计和推论

基本信息

  • 批准号:
    1811812
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Semiparametric regression model provides data scientists a useful way to analyze complex-structured data sets. It allows researchers to model some features in a linear way, without restricting the effect of the rest covariates. This flexibility can greatly enhance the prediction performance especially when parametric model assumptions are invalid. In practice, the semiparametric modelling is proven useful in many high dimensional applications in Biostatistics, Econometrics and Neuroscience. However in literature, there is a lack of statistical studies on the estimation and inference of high dimensional semiparametric model. This project aims to lay a solid theoretical foundation for high dimensional semiparametric analysis, in both frequentist and Bayesian paradigms. This research will significantly promote the use of semiparametric analysis of high dimensional complex data. This project consists of three research components. First, the investigators will establish the frequentist estimation theory and obtain new theoretical insights on the asymptotic behavior of the estimators in high dimensional semiparametric model. Secondly, the investigators will develop novel approach to conduct high dimensional semiparametric inferences such as confidence intervals and explore related semiparametric efficiency issue. Thirdly, Bayesian counterparts of estimation and inference theories will be developed. The investigators will establish the frequentist validity of Bayesian point estimations and interval estimations. These research results will provide important theoretical guidelines for high dimensional semiparametric modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半参数回归模型为数据科学家分析复杂结构的数据集提供了一种有用的方法。它允许研究人员以线性方式对一些特征进行建模,而不会限制其余协变量的影响。这种灵活性可以大大提高预测性能,特别是在参数模型假设无效的情况下。在实践中,半参数模型在生物统计学、计量经济学和神经科学的许多高维应用中被证明是有用的。然而,在文献中,缺乏对高维半参数模型的估计和推断的统计研究。本项目旨在为高维半参数分析奠定坚实的理论基础,包括频率分析和贝叶斯分析。本研究将对高维复杂数据的半参数分析方法的应用具有重要的推动作用。该项目由三个研究部分组成。首先,研究人员将建立频率估计理论,并对高维半参数模型中估计量的渐近行为获得新的理论见解。其次,研究人员将开发新的方法来进行高维半参数推理,如可信区间,并探索相关的半参数效率问题。第三,将发展贝叶斯估计和推理理论的对应物。研究人员将确定贝叶斯点估计和区间估计的频率有效性。这些研究成果将为高维半参数建模提供重要的理论指导。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tensor Graphical Model: Non-Convex Optimization and Statistical Inference
On the Algorithmic Stability of Adversarial Training
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Xing;Qifan Song;Guang Cheng
  • 通讯作者:
    Yue Xing;Qifan Song;Guang Cheng
DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
  • DOI:
    10.1214/18-aos1730
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Volgushev, Stanislav;Chao, Shih-Kang;Cheng, Guang
  • 通讯作者:
    Cheng, Guang
High Dimensional Inference in Partially Linear Models
  • DOI:
    10.2139/ssrn.3015397
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Zhu;Zhuqing Yu;Guang Cheng
  • 通讯作者:
    Ying Zhu;Zhuqing Yu;Guang Cheng
Bayesian shrinkage towards sharp minimaxity
贝叶斯收缩趋于锐极小极大
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qifan Song其他文献

Support Recovery in Sparse PCA with Incomplete Data
支持稀疏PCA中不完整数据的恢复
Support Recovery in Sparse PCA with Non-Random Missing Data
支持稀疏 PCA 中非随机缺失数据的恢复
  • DOI:
    10.48550/arxiv.2302.01535
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanbyul Lee;Qifan Song;J. Honorio
  • 通讯作者:
    J. Honorio
Optimal False Discovery Control of Minimax Estimator
极小极大估计器的最优错误发现控制
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qifan Song;Guang Cheng
  • 通讯作者:
    Guang Cheng
A New Paradigm for Generative Adversarial Networks Based on Randomized Decision Rules
基于随机决策规则的生成对抗网络新范式
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Sehwan Kim;Qifan Song;Faming Liang
  • 通讯作者:
    Faming Liang
Matrix Completion from General Deterministic Sampling Patterns
一般确定性采样模式的矩阵补全
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanbyul Lee;R. Mazumder;Qifan Song;J. Honorio
  • 通讯作者:
    J. Honorio

Qifan Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qifan Song', 18)}}的其他基金

CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
  • 批准号:
    1821183
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似海外基金

New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
  • 批准号:
    23K01340
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Sparse and Efficient Estimation with Semiparametric Models in Meta-Analysis
荟萃分析中半参数模型的稀疏有效估计
  • 批准号:
    2113674
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
New Expansion of the Statistical Analysis Based on Semiparametric Function Estimation
基于半参数函数估计的统计分析的新拓展
  • 批准号:
    19K11851
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semiparametric Bayesian Estimation in Latent Variable Models
潜变量模型中的半参数贝叶斯估计
  • 批准号:
    2260831
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Studentship
Shrinkage estimation of semiparametric marginal models for binary longitudinal data
二元纵向数据半参数边际模型的收缩估计
  • 批准号:
    524940-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    University Undergraduate Student Research Awards
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了