CDS&E: Statistical Methodology for Analysis and Forecasting with Large Scale Temporal Data
CDS
基本信息
- 批准号:1821220
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological advances have enabled the collection of large, complex data that evolve over time. Such data also exhibit heterogeneity across multiple entities (e.g. countries, patients) and on many occasions are sampled collected) at different frequencies. Hence, there is a strong need for developing and tailoring data analysis techniques to the specific requirements imposed by the presence of temporal dependence across multiple variables and also address varying sampling frequency and heterogeneity issues. The statistical learning models, and associated analysis methods developed in this project would be applicable across a wide range of fields, including analysis and forecasting with macroeconomic and financial data and in neuroscience. Empirical work based on the work of this project would provide insights on functional connectivity of brain regions, but also quantify the degree of heterogeneity of subjects suffering from a common disease. They would also be useful to policy makers and financial regulators for devising monitoring schemes that assess stress conditions across markets. Further, we expect significant technology transfer to other application areas, such as environmental sciences where similar types of data, characterized by heterogeneity and mixed frequency sampling, are available. To address the challenges of temporal dependence, heterogeneity and varying sampling frequency in the data this project would: (i) develop and investigate Bayesian versions of Vector Autoregressive (VAR) models for high-dimensional time series data, based on novel prior distributions, (ii) introduce structured sparsity in VAR models and also incorporate exogenous variables, (iii) develop approximate dynamic factor models that can accommodate strongly correlated idiosyncratic components, (iv) develop methods for joint estimation of related VAR models and finally (v) develop Bayesian methodology for handling mixed frequency time series data. A strong emphasis is placed on providing uncertainty quantification of the model parameters, which is particularly important in applications and is usually lacking in many modern methods for large data sets. This project would advance the state of the art for Big Data settings involving a large number of time series both at the modeling, computational and inference fronts. Finally, doctoral students would receive mentoring in novel, timely topics on time series modeling, analysis and forecasting and course curriculum would be advanced.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着时间的推移,技术的进步使得大量复杂数据的收集成为可能。这些数据在多个实体(如国家、患者)之间也表现出不同频率的异质性,在许多情况下是抽样收集的。因此,迫切需要开发和定制数据分析技术,以满足多个变量之间存在的时间依赖性所施加的特定要求,并解决不同采样频率和异质性问题。该项目开发的统计学习模型和相关分析方法将适用于广泛的领域,包括宏观经济和金融数据的分析和预测以及神经科学。基于该项目的实证工作将提供对大脑区域功能连接的见解,但也量化了患有常见疾病的受试者的异质性程度。它们还有助于政策制定者和金融监管机构制定监测方案,评估整个市场的压力状况。此外,我们期望重大的技术转移到其他应用领域,例如环境科学,在这些领域,可以获得以异质性和混合频率采样为特征的类似类型的数据。为了解决数据的时间依赖性、异质性和不同采样频率的挑战,本项目将:(i)开发和研究基于新颖先验分布的高维时间序列数据的向量自回归(VAR)模型的贝叶斯版本,(ii)在VAR模型中引入结构化稀疏性,并纳入外生变量,(iii)开发可以容纳强相关特质成分的近似动态因子模型,(iv)开发相关VAR模型的联合估计方法,最后(v)开发处理混合频率时间序列数据的贝叶斯方法。重点放在提供模型参数的不确定性量化,这在应用中特别重要,并且通常在许多大型数据集的现代方法中缺乏。该项目将在建模、计算和推理方面推进涉及大量时间序列的大数据设置的最新技术。最后,在时间序列建模、分析和预测等新颖、及时的课题上对博士生进行指导,并推进课程设置。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models
高维因子增强向量自回归 (FAVAR) 模型的正则化估计
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:6
- 作者:Jiahe Lin, George Michailidis
- 通讯作者:Jiahe Lin, George Michailidis
Multiple Change Points Detection in Low Rank and Sparse High Dimensional Vector Autoregressive Models
低秩稀疏高维向量自回归模型中的多变化点检测
- DOI:10.1109/tsp.2020.2993145
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Bai, Peiliang;Safikhani, Abolfazl;Michailidis, George
- 通讯作者:Michailidis, George
Low Rank and Structured Modeling of High-Dimensional Vector Autoregressions
- DOI:10.1109/tsp.2018.2887401
- 发表时间:2019-03-01
- 期刊:
- 影响因子:5.4
- 作者:Basu, Sumanta;Li, Xianqi;Michailidis, George
- 通讯作者:Michailidis, George
Regularized joint estimation of related vector autoregressive models
- DOI:10.1016/j.csda.2019.05.007
- 发表时间:2019-11
- 期刊:
- 影响因子:1.8
- 作者:Andrey Skripnikov;G. Michailidis
- 通讯作者:Andrey Skripnikov;G. Michailidis
Strong selection consistency of Bayesian vector autoregressive models based on a pseudo-likelihood approach
基于伪似然方法的贝叶斯向量自回归模型的强选择一致性
- DOI:10.1214/20-aos1992
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ghosh, Satyajit;Khare, Kshitij;Michailidis, George
- 通讯作者:Michailidis, George
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Michailidis其他文献
Asymptotics for <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll" class="math"><mi>p</mi></math>-value based threshold estimation under repeated measurements
- DOI:
10.1016/j.jspi.2016.01.009 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Atul Mallik;Bodhisattva Sen;Moulinath Banerjee;George Michailidis - 通讯作者:
George Michailidis
Queueing Networks of Random Link Topology: Stationary Dynamics of Maximal Throughput Schedules
- DOI:
10.1007/s11134-005-0858-x - 发表时间:
2005-05-01 - 期刊:
- 影响因子:0.700
- 作者:
Nicholas Bambos;George Michailidis - 通讯作者:
George Michailidis
DNEA: an R package for fast and versatile data-driven network analysis of metabolomics data
- DOI:
10.1186/s12859-024-05994-1 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:3.300
- 作者:
Christopher Patsalis;Gayatri Iyer;Marci Brandenburg;Alla Karnovsky;George Michailidis - 通讯作者:
George Michailidis
Statistica Sinica Preprint No: SS-2022-0323
《统计》预印本编号:SS-2022-0323
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Abhishek Kaul;George Michailidis;Statistica Sinica - 通讯作者:
Statistica Sinica
Preface: Computational biomedicine
- DOI:
10.1007/s10479-018-3116-4 - 发表时间:
2019-01-14 - 期刊:
- 影响因子:4.500
- 作者:
Anton Kocheturov;Panos Pardalos;George Michailidis - 通讯作者:
George Michailidis
George Michailidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Michailidis', 18)}}的其他基金
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2334735 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2348640 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319593 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2210358 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2124507 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Extremal Dependence and Change-Point Detection Methods for High-Dimensional Data Streams with Applications to Network Cybersecurity
ATD:协作研究:高维数据流的极端依赖性和变点检测方法及其在网络网络安全中的应用
- 批准号:
1830175 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: IA: F: Too Interconnected to Fail? Network Analytics on Complex Economic Data Streams for Monitoring Financial Stability
BIGDATA:协作研究:IA:F:互联性太强以至于不会失败?
- 批准号:
1632730 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Tenable Power Distribution Networks
CyberSEES:类型 2:协作研究:可维持的配电网络
- 批准号:
1540093 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methodology for Network based Integrative Analysis of Omics Data
合作研究:基于网络的组学数据综合分析统计方法
- 批准号:
1545277 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
- 批准号:
2238656 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319593 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Methodology for Multiple Events in Time and Space
时空多事件的统计方法
- 批准号:
RGPIN-2018-04799 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Innovations in Statistical Methodology and Applications to Economics, Engineering, Health, and Medicine
统计方法的创新及其在经济、工程、健康和医学中的应用
- 批准号:
2210913 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development and innovation of statistical theory and methodology of network meta-analysis
网络荟萃分析统计理论与方法的发展与创新
- 批准号:
22H03554 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical Methodology towards Technology
技术统计方法
- 批准号:
RGPIN-2019-06370 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodology for Correlated Data in Health Sciences
健康科学相关数据的统计方法
- 批准号:
RGPIN-2019-04741 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Statistical methodology for rank based sampling design and finite mixture models
基于等级的抽样设计和有限混合模型的统计方法
- 批准号:
RGPIN-2020-06696 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual