Pencil Puzzles as an Inclusive Domain for Learning Computer Science Concepts
铅笔谜题作为学习计算机科学概念的包容性领域
基本信息
- 批准号:1821459
- 负责人:
- 金额:$ 47.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer science includes abstract, high-level concepts as well as concrete details, such as the proper arrangement of code. As a result, teaching computer science is particularly challenging. Pencil puzzles show promise for learning computer science, as well as for promoting critical and computational thinking and problem solving. This project builds on a previous analysis that demonstrated the effectiveness of pencil puzzles in introductory computer programming courses. It aims to aims to extend the assessment to multiple course levels and to multiple institutions that have different characteristics and student demographics. Pencil puzzles are diagrams that pose a problem that humans solve through deduction, using only a pencil. Most pencil puzzles are language and culture independent, giving them broad potential as a teaching and learning tool. The use of pencil puzzles to teach computer science principles has the potential to broaden participation in computing. This project seeks to provide insights into the puzzles' effects on learning, engagement of diverse populations, suitability for both K-12 and upper division computational thinking courses, and value to instructors as pedagogical tools. The study intends to include a population of deaf and hard-of-hearing students and aims to provide insight into the suitability of the puzzles for this group of students. The project aims to contribute to the growth and diversity of the national computing workforce.The goal of this project is to develop an understanding of how pencil puzzles can provide an effective context for computer science education across populations. This project aims to investigate four research questions. (1) Do pencil-puzzle-based assignments promote measurable learning of computer science concepts and computational thinking across a diverse student population and at various types of institutions? (2) Are the engagement with and the grades on pencil-puzzle-based assignments independent of prior computing experience, gender, and other demographics? (3) Are pencil-puzzle-based assignments suitable for upper levels of collegiate computer science education and for K-12 students learning computational thinking? and 4) Are pencil puzzles valuable to a broad spectrum of educators, including undergraduate educators (including faculty and teaching assistants) and K-12 teachers? The PIs plan to collaborate with instructors at seven different undergraduate institutions (ranging from research intensive to small liberal arts institutions) as well as a middle school and a high school to develop assignments suited to each institution's student body and course format. The project intends to make the new assignments available through an existing online repository (https://www.cs.rit.edu/~pencilpuzzle/#/). Assessments of pencil puzzle effectiveness will take place at each institution and include interviews with instructors and teaching assistants, student surveys, and student grades. The project intends to include extended training of instructors in the use of pencil puzzles to increase their impact on student learning and demonstrate the utility and adoptability of the approach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机科学既包括抽象的高级概念,也包括具体的细节,比如代码的正确排列。因此,计算机科学的教学特别具有挑战性。拼图显示出学习计算机科学的希望,以及促进批判性和计算性思维和解决问题的希望。这个项目建立在以前的分析,证明了铅笔拼图在计算机编程入门课程的有效性。 它旨在将评估扩展到多个课程级别和具有不同特征和学生人口统计数据的多个机构。拼图是一种图表,提出了一个问题,人类通过演绎解决,只用一支铅笔。大多数铅笔拼图都是独立于语言和文化的,这使它们具有作为教学和学习工具的广泛潜力。使用铅笔拼图来教授计算机科学原理有可能扩大对计算的参与。该项目旨在深入了解谜题对学习的影响,不同人群的参与,K-12和高年级计算思维课程的适用性,以及教师作为教学工具的价值。这项研究旨在包括聋人和听力困难的学生人口,并旨在提供深入了解适合这组学生的拼图。该项目旨在促进国家计算机劳动力的增长和多样性。该项目的目标是了解铅笔拼图如何为跨人群的计算机科学教育提供有效的背景。本课题旨在探讨四个研究问题。(1)在不同的学生群体和不同类型的机构中,基于拼图的作业是否促进了计算机科学概念和计算思维的可测量学习?(2)参与和基于拼图的作业的成绩是否独立于先前的计算经验,性别和其他人口统计数据?(3)基于拼图的作业是否适合大学计算机科学教育的高水平和K-12学生学习计算思维?铅笔拼图对广大教育工作者有价值吗?包括本科教育工作者(包括教师和助教)和K-12教师?PI计划与七所不同的本科院校(从研究密集型到小型文科院校)以及一所中学和一所高中的教师合作,开发适合每所院校学生群体和课程形式的作业。该项目打算通过现有的在线资料库(https://www.cs.rit.edu/puzzilpuzzle/#/)提供新的作业。铅笔拼图的有效性评估将在每个机构进行,包括与教师和助教,学生调查和学生成绩的采访。 该项目旨在包括教师使用铅笔拼图的扩展培训,以增加他们对学生学习的影响,并展示该方法的实用性和可采用性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Puzzles in Many Places: Closing the Loop on Propagation
许多地方的谜题:传播的闭环
- DOI:10.1145/3408877.3439653
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Butler, Zack;Bezáková, Ivona;Fluet, Kimberly
- 通讯作者:Fluet, Kimberly
Pencil Puzzles as a Context for Introductory Computing Assignments in Diverse Settings
铅笔谜题作为不同环境中介绍性计算作业的背景
- DOI:10.1145/3478432.3499089
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Butler, Zack;Bezáková, Ivona;Brilliantova, Angelina;Miller, Hannah;Fluet, Kimberly
- 通讯作者:Fluet, Kimberly
Model Selection of Graph Signage Models Using Maximum Likelihood (Student Abstract)
使用最大似然法进行图标牌模型的模型选择(学生摘要)
- DOI:10.1609/aaai.v37i13.26944
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Brilliantova, Angelina;Bezáková, Ivona
- 通讯作者:Bezáková, Ivona
Putting a Context in Context: Investigating the Context of Pencil Puzzles in Multiple Academic Environments
将语境置于语境中:调查多种学术环境中铅笔谜题的语境
- DOI:10.1145/3545945.3569848
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Butler, Zack;Bezáková, Ivona;Brilliantova, Angelina
- 通讯作者:Brilliantova, Angelina
GRASMOS: Graph Signage Model Selection for Gene Regulatory Networks
- DOI:10.1609/aaai.v37i10.26457
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:A. Brilliantova;Hannah Miller;Ivona Bez'akov'a
- 通讯作者:A. Brilliantova;Hannah Miller;Ivona Bez'akov'a
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zack Butler其他文献
Zack Butler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zack Butler', 18)}}的其他基金
On Beyond Sudoku: Pencil Puzzles as an Engaging Problem Domain for Introductory Computer Science
超越数独:铅笔谜题作为计算机科学入门的一个引人入胜的问题领域
- 批准号:
1245349 - 财政年份:2013
- 资助金额:
$ 47.41万 - 项目类别:
Standard Grant
NRI-Small: Human-Robot Collectives as a Curriculum-Wide CS Learning Platform
NRI-Small:作为全课程 CS 学习平台的人机集体
- 批准号:
1208566 - 财政年份:2012
- 资助金额:
$ 47.41万 - 项目类别:
Continuing Grant
SEI: Collaborative Research: Computational Tools for Managing Herds
SEI:协作研究:管理牛群的计算工具
- 批准号:
0513628 - 财政年份:2005
- 资助金额:
$ 47.41万 - 项目类别:
Standard Grant
相似海外基金
NSF-BSF: Universality Puzzles and Coherent Control of Efimov Physics with 7Li Atoms
NSF-BSF:7Li 原子 Efimov 物理的普遍性难题和相干控制
- 批准号:
2308791 - 财政年份:2023
- 资助金额:
$ 47.41万 - 项目类别:
Standard Grant
A Gesture-Powered Software Platform of Neurologic Music Therapy Games and Puzzles: To Stimulate Neuroplasticity and Prolong Functional Independence in Individuals Diagnosed with Alzheimer's Disease
神经音乐治疗游戏和谜题的手势驱动软件平台:刺激阿尔茨海默病患者的神经可塑性并延长功能独立性
- 批准号:
10852784 - 财政年份:2023
- 资助金额:
$ 47.41万 - 项目类别:
A Gesture-Powered Software Platform of Neurologic Music Therapy Games and Puzzles: To Stimulate Neuroplasticity and Prolong Functional Independence in Individuals Diagnosed with Alzheimer's Disease
神经音乐治疗游戏和谜题的手势驱动软件平台:刺激阿尔茨海默病患者的神经可塑性并延长功能独立性
- 批准号:
10611831 - 财政年份:2023
- 资助金额:
$ 47.41万 - 项目类别:
Distorted Beliefs and Asset Price Disconnect Puzzles
扭曲的信念与资产价格脱节之谜
- 批准号:
DP210103427 - 财政年份:2021
- 资助金额:
$ 47.41万 - 项目类别:
Discovery Projects
Demystifying Puzzles in Retirement Planning
揭开退休计划中的谜团
- 批准号:
DE200101266 - 财政年份:2020
- 资助金额:
$ 47.41万 - 项目类别:
Discovery Early Career Researcher Award
NSF-BSF: Universality Puzzles and Coherent Control of Efimov Physics with 7Li Atoms
NSF-BSF:7Li 原子 Efimov 物理的普遍性难题和相干控制
- 批准号:
2012125 - 财政年份:2020
- 资助金额:
$ 47.41万 - 项目类别:
Continuing Grant
Firm Dynamics, Market Power and Productivity Puzzles
企业动态、市场力量和生产力难题
- 批准号:
ES/S000089/1 - 财政年份:2019
- 资助金额:
$ 47.41万 - 项目类别:
Research Grant
Solving the Puzzles in the Open Macroeconomics and International Finance
解决开放宏观经济和国际金融中的难题
- 批准号:
18K01696 - 财政年份:2018
- 资助金额:
$ 47.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)