Conference: Machine Learning in Science and Engineering

会议:科学与工程中的机器学习

基本信息

  • 批准号:
    1822279
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2019-10-31
  • 项目状态:
    已结题

项目摘要

This award supports the first annual Symposium on Machine Learning in Science and Engineering (MLSE), held in Pittsburg, Pennsylvania, June 6-8, 2018. The meeting, initially organized by Carnegie Mellon University and Georgia Tech, is the first comprehensive and open annual conference bringing together leading researchers in science and engineering whose work benefits from advances in machine learning and data science. While machine learning has revolutionized many areas of biological and biomedical research, its impact across the sciences and engineering is at an early stage. This symposium will bring together researchers in a diversity of Science, Technology, Engineering, and Math (STEM) areas focused on applying machine learning to problems of fundamental or applied nature. Presentations will focus on adapting existing machine learning methods to current research areas, developing new machine learning algorithms specific to science and engineering, and identifying new frontiers of research that may only be pursued using a data-driven approach. The symposium will offer attendees focused short courses taught by experts in machine learning on a variety of cutting-edge tools that are critical in advancing these fields. The MLSE symposium will help catalyze machine learning methodologies and collaborations across the sciences and engineering, bringing together researchers in a diversity of STEM areas focused on applying machine learning to fundamental and applied problems. Presentations will focus on adapting existing machine learning methods to current research areas, developing new machine learning algorithms specific to science and engineering, and identifying new frontiers of research that may only be pursued using a data-driven approach.The symposium is anticipated to reach, in its first year, at least 400 direct participants and attendees, including under-represented minorities, those attending Minority Serving Institutions (MSIs), and low income students local to the conference venues, or selected to travel to the event based on merit and need. Several groups within the research community are involved, including a diverse group of students, early career researchers and faculty. Information will be widely disseminated on a continuing basis through news items published via community-specific and broad news release venues. Partial support is being provided primarily to enable participation by students and young researchers, in addition to a limited number of tutorial and plenary speakers. The organizers are committed to promoting participation among underrepresented groups, junior researchers and students, and including tutorials to widen accessibility to as large a group of attendees, as possible. The organizers will have an open competition for these travel awards, selected by a diverse committee, and the opportunity to apply will be widely disseminated across the relevant disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持于2018年6月6-8日在宾夕法尼亚州匹兹堡举行的首届科学与工程领域机器学习年度研讨会。这次会议最初由卡内基梅隆大学和佐治亚理工学院组织,是第一次全面和开放的年度会议,聚集了科学和工程领域的领先研究人员,他们的工作受益于机器学习和数据科学的进步。虽然机器学习已经给生物和生物医学研究的许多领域带来了革命性的变化,但它对科学和工程的影响还处于早期阶段。这次研讨会将汇集科学、技术、工程和数学(STEM)领域的研究人员,专注于将机器学习应用于基础或应用性质的问题。演讲将侧重于使现有的机器学习方法适应当前的研究领域,开发专门针对科学和工程的新的机器学习算法,并确定只能使用数据驱动方法进行的研究的新前沿。研讨会将为与会者提供由机器学习专家讲授的关于各种尖端工具的重点短期课程,这些工具对推动这些领域的发展至关重要。MLSE研讨会将有助于促进机器学习方法和跨科学和工程领域的合作,将各种STEM领域的研究人员聚集在一起,专注于将机器学习应用于基本和应用问题。演讲将集中于使现有的机器学习方法适应当前的研究领域,开发专门针对科学和工程的新的机器学习算法,并确定只能使用数据驱动的方法进行研究的新前沿。研讨会预计在第一年至少有400名直接参与者和与会者,包括代表人数不足的少数族裔、参加少数族裔服务机构(MSI)的人和会议场馆当地的低收入学生,或根据优点和需求被选为前往活动的人。研究社区中的几个团体参与其中,包括不同的学生、早期职业研究人员和教职员工。信息将继续通过社区特定和广泛的新闻发布场所发布的新闻项目广泛传播。提供部分支助主要是为了使学生和青年研究人员能够参与,此外还有数量有限的辅导员和全体演讲者。组织者致力于促进代表性不足的群体、初级研究人员和学生的参与,并包括教程,以扩大尽可能多的与会者的可及性。组织者将对这些旅行奖项进行公开竞争,由一个多元化的委员会选出,申请的机会将在相关学科中广泛传播。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dana Randall其他文献

Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011
  • DOI:
    10.1137/1.9781611973082
  • 发表时间:
    2011-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dana Randall
  • 通讯作者:
    Dana Randall
Factoring graphs to bound mixing rates
将图表因式分解以限制混合速率
Spanning tree methods for sampling graph partitions
用于对图分区进行采样的生成树方法
  • DOI:
    10.48550/arxiv.2210.01401
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sarah Cannon;M. Duchin;Dana Randall;Parker Rule
  • 通讯作者:
    Parker Rule
Mixing Points on an Interval
间隔上的混合点
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dana Randall;P. Winkler
  • 通讯作者:
    P. Winkler
Hubs and Authorities in a Hyperlinked Environment 1 Searching the World Wide Web
超链接环境中的中心和权威机构 1 搜索万维网
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dana Randall
  • 通讯作者:
    Dana Randall

Dana Randall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dana Randall', 18)}}的其他基金

Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
  • 批准号:
    2106687
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
TRIPODS+X: VIS: Creating an Annual Data Science Forum
TRIPODS X:VIS:创建年度数据科学论坛
  • 批准号:
    1839340
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Distributed and Stochastic Algorithmic Framework for Active Matter
AitF:协作研究:活性物质的分布式随机算法框架
  • 批准号:
    1637031
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
AF: Small: Markov Chain Algorithms for Problems from Computer Science and Statistical Physics
AF:小:计算机科学和统计物理问题的马尔可夫链算法
  • 批准号:
    1526900
  • 财政年份:
    2015
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
AF: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Economics
AF:计算机科学、统计物理和经济学问题的马尔可夫链算法
  • 批准号:
    1219020
  • 财政年份:
    2012
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Markov Chain Algorithms for Problems from Computer Science and Statistical Physics
用于计算机科学和统计物理问题的马尔可夫链算法
  • 批准号:
    0830367
  • 财政年份:
    2008
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Markov Chain Algorithms for Problems from Computer Science and Statistical Physics
用于计算机科学和统计物理问题的马尔可夫链算法
  • 批准号:
    0505505
  • 财政年份:
    2005
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Analysis of Markov Chains and Algorithms for Ad-Hoc Networks
Ad-Hoc 网络的马尔可夫链和算法分析
  • 批准号:
    0515105
  • 财政年份:
    2005
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Markov Chain Algorithms for Computational Problems from Physics and Biology
用于物理和生物学计算问题的马尔可夫链算法
  • 批准号:
    0105639
  • 财政年份:
    2001
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for the Seventh Conference on Machine Learning and Systems (MLSys 2024)
旅行:第七届机器学习和系统会议 (MLSys 2024) 的 NSF 学生旅行补助金
  • 批准号:
    2423768
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: EPSCoR Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles
会议:EPSCoR 高能宇宙粒子机器学习分析研讨会
  • 批准号:
    2336900
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for the Sixth Conference on Machine Learning and Systems (MLSys 2023)
旅行:第六届机器学习和系统会议 (MLSys 2023) 的 NSF 学生旅行补助金
  • 批准号:
    2325547
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Foundations of Process/Product Analytics and Machine learning (FOPAM 2023)
会议:流程/产品分析和机器学习的基础 (FOPAM 2023)
  • 批准号:
    2303860
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Midwest Machine Learning Symposium
会议:中西部机器学习研讨会
  • 批准号:
    2318876
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2023 IEEE Conference on Secure and Trustworthy Machine Learning (IEEE SaTML)
旅行:2023 年 IEEE 安全可信机器学习会议 (IEEE SaTML) 的 NSF 学生旅行补助金
  • 批准号:
    2317300
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Mathematics and Machine Learning 2023
会议:数学与机器学习 2023
  • 批准号:
    2331298
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
  • 批准号:
    2321063
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了