Conference: Foundations of Process/Product Analytics and Machine learning (FOPAM 2023)
会议:流程/产品分析和机器学习的基础 (FOPAM 2023)
基本信息
- 批准号:2303860
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference on Foundations of Process/Product Analytics and Machine learning (FOPAM 2023) follows on the success of FOPAM 2019 and aims to bring together an international group of industrial and academic participants to discuss the status and future directions in chemical process data analytics and machine learning. NSF funding will support travel expenses for under-represented groups, early career faculty, postdocs, and Ph.D. students who otherwise would find it difficult to secure sufficient funds to attend the conference. The conference organizers’ aim is to influence how they will shape the future of data science for the process industries. Group interactions will be promoted via invited talks, discussions, poster sessions, and other unstructured activities in the afternoons. The conference starts with a plenary and welcome reception on the evening of July 31, 2023. The mornings and evenings of the next three days of the conference will be single-track oral sessions of invited speakers providing their perspectives on subtopics within the field of data analytics and machine learning, supplemented by question-and-answer periods and panel discussions. Two poster sessions will be included in the conference schedule, and the conference will be preceded by one and one-half days of optional workshops.The Chemical Process Industries (CPI) have seen unprecedented increases in the quantity and variety of data available for making decisions, increasing product quality, and gaining process and supply chain efficiencies. There are many unsolved theoretical and practical problems to address as the historically separate fields of machine learning, process design, computational chemical product development, process operation optimization, and supply-chain analysis converge. One major outcome of the Foundations of Process/Product Analytics and Machine learning (FOPAM 2023) conference will be to identify technology gaps in data analytics and machine learning relevant to the CPI. Researchers from each field will learn from each other and new directions will be set through discussions following oral and poster presentations, aided by conference rapporteurs. Position papers will set directions for research in process systems engineering and related areas for years to come. The conference will bring together industry and university researchers and application engineers in process data analytics and machine learning to assess what has been accomplished in the past five years and to examine where the field is heading. The following topics will be explored: 1) emerging methods in machine learning and data science; 2) industrial data-science applications; 3) machine learning for process and product computational chemistry; 4) data science for process design, optimization, and control; and 5) past and future of process analytics and machine learning, including education and workforce development. The funds requested from the National Science Foundation will be used to support 25 participants. Half of the funding will be used to support under-represented groups in science and engineering and the other half will be used to support early career researchers, which will be a combination of faculty members, postdocs, and graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过程/产品分析和机器学习基础会议(FOPAM 2023)是继2019年FOPAM成功之后举行的,旨在汇聚一个由国际工业界和学术界参与者组成的小组,讨论化学过程数据分析和机器学习的现状和未来方向。NSF的资金将支持代表不足的群体、早期职业教师、博士后和博士后的旅费,否则他们很难获得足够的资金来参加会议。会议组织者的目标是影响他们将如何塑造流程工业数据科学的未来。下午将通过受邀的演讲、讨论、海报会议和其他非结构化活动来促进小组互动。大会以2023年7月31日晚的全体会议和欢迎招待会开始。会议今后三天的上午和晚上将由受邀发言者进行单轨口头发言,介绍他们对数据分析和机器学习领域的副专题的看法,并辅之以问答和小组讨论。会议日程将包括两个海报会议,会议之前将有一天半的可选工作坊。化工过程工业(CPI)可用于决策、提高产品质量、获得过程和供应链效率的数据数量和种类都出现了前所未有的增长。随着机器学习、工艺设计、计算化学产品开发、工艺操作优化和供应链分析等历史上分离的领域融合,有许多未解决的理论和实践问题需要解决。过程/产品分析和机器学习基础(FOPAM 2023)会议的一个主要成果将是确定与CPI相关的数据分析和机器学习方面的技术差距。来自每个领域的研究人员将相互学习,并将在会议报告员的协助下,通过口头和海报发言后的讨论确定新的方向。职位论文将为未来几年过程系统工程和相关领域的研究设定方向。这次会议将汇聚过程数据分析和机器学习领域的行业和大学研究人员以及应用工程师,以评估过去五年取得的成就,并审查该领域的发展方向。将探讨以下主题:1)机器学习和数据科学的新兴方法;2)工业数据科学的应用;3)过程和产品计算化学的机器学习;4)过程设计、优化和控制的数据科学;5)过程分析和机器学习的过去和未来,包括教育和劳动力发展。从国家科学基金会申请的资金将用于支持25名参与者。一半的资金将用于支持科学和工程领域代表性不足的群体,另一半将用于支持早期职业研究人员,这些研究人员将由教师、博士后和研究生组成。该奖项反映了NSF的法定使命,通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmet Palazoglu其他文献
Controlled Molecular Transport through Nanofilters with Tapered and Cylindrical Pores
- DOI:
10.1016/j.bpj.2008.12.3852 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Nazar Ileri;Michael Wiederoder;Pieter Stroeve;Sonia Letant;Jerald Britten;Hoang Nguyen;Cindy Larson;Rodney Balhorn;Michael Shirk;Saleem Zaidi;Ahmet Palazoglu;Roland Faller;Joseph W. Tringe - 通讯作者:
Joseph W. Tringe
Prediction of ozone levels using a Hidden Markov Model (HMM) with Gamma distribution
使用具有伽马分布的隐马尔可夫模型 (HMM) 预测臭氧水平
- DOI:
10.1016/j.atmosenv.2012.08.008 - 发表时间:
2012-12 - 期刊:
- 影响因子:5
- 作者:
Hao Zhang;Weidong Zhang;Ahmet Palazoglu;Wei sun - 通讯作者:
Wei sun
Fault Detection, Isolation, and Distinguishing Between Sensor Failures and Disturbances
- DOI:
10.1016/s1474-6670(17)38515-4 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:
- 作者:
Fuat Doymaz;Jose A. Romagnoli;Ahmet Palazoglu - 通讯作者:
Ahmet Palazoglu
Industrial Process Fault Detection Based on Siamese Recurrent Autoencoder
- DOI:
10.1016/j.compchemeng.2024.108887 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Cheng Ji;Fangyuan Ma;Jingde Wang;Wei Sun;Ahmet Palazoglu - 通讯作者:
Ahmet Palazoglu
Ahmet Palazoglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmet Palazoglu', 18)}}的其他基金
US-Turkey Cooperative Research Project: Studies on the Folding Dynamics of Proteins
美国-土耳其合作研究项目:蛋白质折叠动力学研究
- 批准号:
0352868 - 财政年份:2004
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
A Study on the Theory and Practice of Nonlinear Process Control Using Functional Expansion (FEx) Models
使用函数扩展(FEx)模型的非线性过程控制的理论与实践研究
- 批准号:
9800073 - 财政年份:1998
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Dynamic Analysis and Control of Nonlinear Processes via Nonlinear Transfer Functions
通过非线性传递函数进行非线性过程的动态分析和控制
- 批准号:
9400304 - 财政年份:1994
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
U.S.-Australia Cooperative Research: Study on the Control of Linear and Non-Linear Chemical Process
美澳合作研究:线性和非线性化工过程控制研究
- 批准号:
9215832 - 财政年份:1993
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
U.S. - Argentina Cooperative Research: Studies on the Robust Control of Chemical Processes
美国-阿根廷合作研究:化学过程鲁棒控制研究
- 批准号:
9001963 - 财政年份:1991
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Research Initiation: Eigenvalue Inclusion Regions to Study Model Approximations for Distributed Parameter Systems
研究启动:特征值包含区域研究分布参数系统的模型逼近
- 批准号:
8810318 - 财政年份:1988
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
相似海外基金
Conference: 10th International Conference on Foundations of Computer Aided Process Design (FOCAPD-2024): Designing for the Future Digital and Carbon Neutral Economy
会议:第十届计算机辅助过程设计基础国际会议(FOCAPD-2024):为未来数字和碳中和经济设计
- 批准号:
2413592 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Process-based soil behaviour modelling for subsea structure foundations in carbonate sand environment
碳酸盐砂环境中海底结构基础基于过程的土壤行为建模
- 批准号:
EP/V012169/1 - 财政年份:2021
- 资助金额:
$ 5.2万 - 项目类别:
Research Grant
FOPAM 2019: Foundations of Process Analytics and Machine learning
FOPAM 2019:过程分析和机器学习的基础
- 批准号:
1927746 - 财政年份:2019
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Foundations of Computer-Aided Process Design (FOCAPD-2014)
计算机辅助流程设计基础 (FOCAPD-2014)
- 批准号:
1440108 - 财政年份:2014
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
The cognitive foundations of the drawing process and their development
绘画过程的认知基础及其发展
- 批准号:
22730504 - 财政年份:2010
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research - MOD: The R&D "Lab" of the Future: Foundations for Modeling the R&D/Innovation Planning Process
合作研究 - MOD:R
- 批准号:
0830339 - 财政年份:2008
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Collaborative Research - MOD: The R&D "Lab" of the Future: Foundations for Modeling the R&D/Innovation Planning Process
合作研究 - MOD:R
- 批准号:
0830340 - 财政年份:2008
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Foundations of Process Calculi and Contextual Systems
过程计算和上下文系统的基础
- 批准号:
EP/D066565/2 - 财政年份:2007
- 资助金额:
$ 5.2万 - 项目类别:
Fellowship
Foundations of Process Calculi and Contextual Systems
过程计算和上下文系统的基础
- 批准号:
EP/D066565/1 - 财政年份:2006
- 资助金额:
$ 5.2万 - 项目类别:
Fellowship
Support of Foundations of Computer Aided Process Operations (FOCAPO) 2003 Conference: A View to the Future Integration of R&D, Manufacturing and the Global Supply Chain
支持计算机辅助流程操作基金会 (FOCAPO) 2003 年会议:对 R 未来集成的展望
- 批准号:
0213622 - 财政年份:2002
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant