Mapping Fields in Augmented Reality with Personal Mobile Devices: Enhancing Visualization Skills for Education and Industry

使用个人移动设备映射增强现实领域:增强教育和工业的可视化技能

基本信息

项目摘要

Magnetic field visualizations are essential to many branches of the technology workforce. While fields are a core concept in K-14 STEM education, the field model of magnetic interactions is often poorly conveyed and regularly misunderstood by K-14 teachers and students alike. This project will significantly advance the augmented reality (AR) capabilities of personal mobile devices to help learners conceptualize magnetic fields. The proposed technology will enable users to use smartphones or tablets to visualize in real time and 3-D, the shape, magnitude and direction of magnetic fields around everyday objects. Few affordable technological solutions exist to address students' difficulties with fields or to support instructional improvements with 3-D visualization. This innovative technology development and educational research aims to address this issue by providing a broadly accessible, easy to-use, low cost magnetic field visualization tool that will enable both guided and unguided exploration, and support the learner's ability to make sense of magnetic field interactions in their environment. Ultimately, this project will produce low-cost visualization tools that will be available to smartphone users for use anytime, anywhere to visualize the magnetic fields in their environment or workplace. Researchers and educational software developers will design and create a new software educational tool as well as developer resources for data-based visualization. The software will utilize the new capabilities of recently-introduced AR frameworks to determine physical location of the mobile device based upon both the inertial sensor unit including accelerometer and gyroscope, and the camera. It then overlays the screen with field information based upon the magnetometer. Magnetic field data will be collected as the user "sweeps" through space surrounding a field source by simply moving the mobile device around the physical area. The vast majority of pre-existing AR software resources utilize tools to superimpose images onto a primarily 2-D world, require the use of an image target, and focus on entertainment as the main goal, not education. The development of the proposed application for teaching and learning will work toward addressing technological challenges for developers in motion tracking, environmental understanding, and light estimation, as well as challenges associated with field data acquisition and 3-D visualization. The researchers will study how this new tool will support the teaching and learning of fields, a notoriously difficult topic for introductory learners given its reliance upon theoretical understanding and 3-D visualizations. User testing and observations in both high school and college physics classrooms will be carried out during the development process. A Magnetic Field Concept Inventory will be developed and used to measure student gains in conceptual coherence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
磁场可视化对于技术劳动力的许多分支都是必不可少的。虽然场是K-14 STEM教育的核心概念,但磁场相互作用的场模型往往传达得很差,经常被K-14教师和学生误解。该项目将显著推进个人移动的设备的增强现实(AR)功能,以帮助学习者概念化磁场。拟议中的技术将使用户能够使用智能手机或平板电脑以真实的时间和3-D方式可视化日常物体周围磁场的形状,大小和方向。很少有负担得起的技术解决方案存在,以解决学生的困难与领域或支持教学改进与三维可视化。这种创新的技术开发和教育研究旨在通过提供一种广泛访问,易于使用,低成本的磁场可视化工具来解决这个问题,该工具将实现引导和无引导的探索,并支持学习者理解其环境中磁场相互作用的能力。最终,该项目将产生低成本的可视化工具,可供智能手机用户随时随地使用,以可视化其环境或工作场所中的磁场。研究人员和教育软件开发人员将设计和创建一个新的软件教育工具以及基于数据的可视化开发人员资源。该软件将利用最近推出的AR框架的新功能,根据包括加速度计和陀螺仪在内的惯性传感器单元以及相机来确定移动终端的物理位置。然后,它将基于磁力计的磁场信息覆盖在屏幕上。当用户通过简单地在物理区域周围移动移动终端来“扫描”场源周围的空间时,将收集磁场数据。绝大多数现有的AR软件资源利用工具将图像复制到主要的2D世界上,需要使用图像目标,并将娱乐作为主要目标,而不是教育。拟议的教学应用程序的开发将致力于解决开发人员在运动跟踪,环境理解和光线估计方面的技术挑战,以及与现场数据采集和3-D可视化相关的挑战。研究人员将研究这种新工具将如何支持领域的教学和学习,这对于入门学习者来说是一个非常困难的话题,因为它依赖于理论理解和3D可视化。在高中和大学物理教室的用户测试和观察将在开发过程中进行。一个磁场概念清单将被开发并用于衡量学生在概念一致性方面的收获。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics in a Space Science Context: Learning Sequences to Teach Electromagnetic Waves and Fields
空间科学背景下的物理:学习电磁波和场的序列
  • DOI:
    10.1119/5.0094223
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vieyra, Rebecca Elizabeth;Lopez, Ramon
  • 通讯作者:
    Lopez, Ramon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colleen Megowan-Romanowicz其他文献

Colleen Megowan-Romanowicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colleen Megowan-Romanowicz', 18)}}的其他基金

Combining Smartphone Light Detection and Ranging with Augmented Reality to Enhance Position-Based Teaching and Learning in STEM
将智能手机光检测和测距与增强现实相结合,增强 STEM 中基于位置的教学
  • 批准号:
    2114586
  • 财政年份:
    2021
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Standard Grant

相似国自然基金

手性Salen配合物催化与底物诱导的不对称多组分Kabachnik-Fields反应
  • 批准号:
    21162008
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Bridging fields and expanding research opportunities with the timescale of life
弥合不同领域并扩大研究机会与生命的时间尺度
  • 批准号:
    2318917
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Continuing Grant
Landscape-climate disequilibrium in dune fields
沙丘地区的景观-气候不平衡
  • 批准号:
    DE240100552
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
  • 批准号:
    2321297
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Continuing Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Research Grant
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
  • 批准号:
    23K25768
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
  • 批准号:
    2412147
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Standard Grant
Investigating Magnetic Fields in High-Mass Pre-stellar Cores using ALMA
使用 ALMA 研究高质量前恒星核心的磁场
  • 批准号:
    24K17100
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fourier analytic techniques in finite fields
有限域中的傅立叶分析技术
  • 批准号:
    EP/Y029550/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Research Grant
Atomic sensors for dark matter, rotation and magnetic fields
用于暗物质、旋转和磁场的原子传感器
  • 批准号:
    DP240100534
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Discovery Projects
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
  • 批准号:
    2321298
  • 财政年份:
    2024
  • 资助金额:
    $ 38.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了