Combining Smartphone Light Detection and Ranging with Augmented Reality to Enhance Position-Based Teaching and Learning in STEM
将智能手机光检测和测距与增强现实相结合,增强 STEM 中基于位置的教学
基本信息
- 批准号:2114586
- 负责人:
- 金额:$ 57.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how to measure, display, and interpret motion is important for many STEM-related careers, particularly in the physical and data sciences. Educational researchers have advocated for numerous approaches to support sense-making with mathematical models of motion, but teachers often struggle to enact them due to limited resources. This project will make high-precision position sensing a reality for anyone who owns a smartphone by building on light-based mobile sensors (LiDAR) that are able to detect one’s distance from objects and location within a space. The educational research will measure the effect of using this new technology to improve student learning and engagement with regard to mathematical models with motion graphs, by producing a classroom-ready application and gamified lessons for teachers and students to use in traditional classrooms as well as the home. Researchers and educational software developers will develop new data visualization technology based on iOS’ scanning LiDAR and Android’s time-of-flight depth imaging. The proposed technological innovation will make use of the novel back-facing infrared beam array to significantly increase precision in position measurements and the placement of augmented reality (AR) visualizations based on users’ movements and environmental data. This project will determine the extent to which LiDAR-aided AR technology can enable high-precision, position-based, and real-time data visualization. It will explore how the new technology can provide the kind of cognitive scaffolding and embodied experiences needed for advancing teaching about modeling motion with graphs and vectors. Research in the learning sciences will entail a collaboration with STEM educators to develop and test the effectiveness of scenarios for exploration in traditional and remote learning contexts. This proposal will assess full-body movement to make sense of motion graphs with a focus on embodied learning and practice with data visualization literacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解如何测量,显示和解释运动对于许多与STEM相关的职业,尤其是在物理和数据科学方面都很重要。教育研究人员提倡通过数学动作模型来支持感知创造的多种方法,但是由于资源有限,教师经常努力制定他们。该项目将使拥有智能手机的任何人通过基于光的移动传感器(LIDAR)构建能够检测到一个人与空间内的物体和位置的距离,这将使高精度位置感知感官。该教育研究将通过生产有关教室就绪的应用程序和Gamidi课程,供教师和学生在传统的教室以及家庭中使用的教师课程,以改善使用这项新技术来改善学生学习和参与数学模型的效果。研究人员和教育软件开发人员将根据iOS的扫描激光雷达和Android的飞行时间深度成像开发新的数据可视化技术。拟议的技术创新将利用新型的背面基础设施梁阵列,以显着提高位置测量值的精度,并根据用户的动作和环境数据来实现增强现实(AR)可视化的位置。该项目将确定激光雷达AR技术可以在多大程度上实现高精度,基于位置和实时数据可视化的程度。它将探索新技术如何提供通过图形和向量进行建模运动所需的认知脚手架和体现的经验。学习科学的研究将需要与STEM教育者进行合作,以开发和测试场景在传统和远程学习环境中探索的有效性。该提案将评估全身运动,以使运动图的意义,重点是具有数据可视化素养的体现学习和实践。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来通过评估来评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating learning of motion graphs with a LiDAR-based smartphone application
使用基于 LiDAR 的智能手机应用程序评估运动图的学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Megowan-Romanowicz, C.;O’Brien, D. J.;Vieyra, R. E.;Johnson-Glenberg, M.
- 通讯作者:Johnson-Glenberg, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colleen Megowan-Romanowicz其他文献
Colleen Megowan-Romanowicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colleen Megowan-Romanowicz', 18)}}的其他基金
Mapping Fields in Augmented Reality with Personal Mobile Devices: Enhancing Visualization Skills for Education and Industry
使用个人移动设备映射增强现实领域:增强教育和工业的可视化技能
- 批准号:
1822728 - 财政年份:2018
- 资助金额:
$ 57.35万 - 项目类别:
Standard Grant
相似国自然基金
问题性手机使用的人工智能干预研究——基于自我决定理论和压力应对理论的双轨机制
- 批准号:82304258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于手机信令大数据的新冠疫情前后城市居民移动性规律变化研究
- 批准号:42301210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米酶侧流试纸条结合智能手机快速检测介水病毒
- 批准号:22376112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
智能手机观测气压:误差订正及其对天气预报的可能影响
- 批准号:42375009
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
前额叶功能网络“活跃”及兴奋性/抑制性神经递质“失衡”在联结大学生手机依赖增加抑郁风险中的作用
- 批准号:82304169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
DS-ARC: A Remote Digital Cognitive Assessment for Down Syndrome-Associated Alzheimer's Disease
DS-ARC:针对唐氏综合症相关阿尔茨海默病的远程数字认知评估
- 批准号:
10638314 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
Feasibility of app-delivered circadian synchronization therapy with light in a cohort of pregnant women
应用程序提供的光昼夜节律同步治疗对孕妇队列的可行性
- 批准号:
10823065 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
Smartphone-based POC Testing for HIV Using Glowstick Chemistry
基于智能手机的 HIV 使用荧光棒化学进行 POC 测试
- 批准号:
10594143 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别: