Teachers are the Learners: Providing Automated Feedback on Classroom Inter-Personal Dynamics
教师是学习者:提供有关课堂人际动态的自动反馈
基本信息
- 批准号:1822768
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The quality of teacher-student interactions in school classrooms both predicts and impacts students' learning outcomes. Training teachers to perceive subtle interactions and interpersonal classroom dynamics more accurately can help them to implement more effective interactions in their own classrooms. Contemporary methods of training teachers to understand classroom interactions are based mostly on watching classroom observation videos of other teachers, which have been annotated for different dimensions ("positive climate", "teacher sensitivity", etc.). Only rarely do teachers receive personalized feedback on their own classroom interactions captured in video, and when they do, it is sparse - typically one comment for every 15-minute video segment without any details. This project will automate classroom observations using a system called Automatic Classroom Observation Recognition neural Network (ACORN). This system will integrate multimodal features consisting of facial expression, eye gaze, auditory emotion, speech, and language in order to assess classroom dynamics automatically. As a complement to ACORN, the researchers will also develop a Classroom Observation Interactive Learning System (COILS) that trains teachers to perceive classroom dynamics more precisely.ACORN will be trained and tested on two coded classroom observation datasets of hundreds of pre-school and elementary school teachers across the USA. Moreover, based on the ACORN prototype, COILS will be developed. COILS will then be evaluated in a study on 50 pre-service teachers. The research questions are: 1) Will the observation training with COILS help them perceive classroom interactions more precisely? 2) How well will ACORN perform vs human coders? and 3) How well can the machine learned automated subjective activity perform in the new domain of classroom dynamics? The researchers will also explore different machine learning computational architectures that can utilize modest-sized data sets to accurately learn from multi-modal data. If successful, both ACORN and COILS can be extended from pre-service teachers to train in-service teachers in understanding classroom dynamics to improve their teaching.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学校课堂师生互动的质量既能预测也能影响学生的学习成果。培训教师更准确地感知微妙的互动和人际课堂动态,可以帮助他们在自己的课堂上实施更有效的互动。培训教师理解课堂互动的当代方法主要是基于观看其他教师的课堂观察视频,这些视频已被注释为不同的维度(“积极的气氛”,“教师敏感性”等)。教师很少会收到关于他们自己在视频中捕获的课堂互动的个性化反馈,即使他们这样做,也是稀疏的-通常每15分钟的视频片段有一条评论,没有任何细节。该项目将使用一个名为自动课堂观察识别神经网络(ACORN)的系统来自动进行课堂观察。该系统将整合多模态特征,包括面部表情,眼睛凝视,听觉情感,语音和语言,以自动评估课堂动态。作为对ACORN的补充,研究人员还将开发一个课堂观察互动学习系统(COILS),用于培训教师更准确地感知课堂动态。ACORN将在美国数百名学前和小学教师的两个编码课堂观察数据集上进行培训和测试。此外,基于ACORN原型,将开发线圈。然后,将在对50名职前教师的研究中对COILS进行评估。研究问题是:1)使用COILS的观察训练是否有助于他们更准确地感知课堂互动?2)ACORN与人类程序员相比表现如何?3)机器学习的自动主观活动在课堂动态的新领域中表现如何? 研究人员还将探索不同的机器学习计算架构,这些架构可以利用中等规模的数据集来准确地从多模态数据中学习。如果成功,ACORN和COILS都可以从职前教师扩展到培训在职教师了解课堂动态以改进教学。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的评估来支持智力优点和更广泛的影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compositional Embeddings for Multi-Label One-Shot Learning
- DOI:10.1109/wacv48630.2021.00034
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Zeqian Li;M. Mozer;J. Whitehill
- 通讯作者:Zeqian Li;M. Mozer;J. Whitehill
Automatic Classifiers as Scientific Instruments: One Step Further Away from Ground-Truth
作为科学仪器的自动分类器:离地面真相又近了一步
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Whitehill, Jacob;Ramakrishnan, Anand
- 通讯作者:Ramakrishnan, Anand
Compositional Embedding Models for Speaker Identification and Diarization with Simultaneous Speech From 2+ Speakers
- DOI:10.1109/icassp39728.2021.9413752
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Zeqian Li;J. Whitehill
- 通讯作者:Zeqian Li;J. Whitehill
Noise-Robust Key-Phrase Detectors for Automated Classroom Feedback
- DOI:10.1109/icassp40776.2020.9053173
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Brian Zylich;J. Whitehill
- 通讯作者:Brian Zylich;J. Whitehill
In Search of Negative Moments: Multi-Modal Analysis of Teacher Negativity in Classroom Observation Videos
寻找消极时刻:课堂观察视频中教师消极情绪的多模态分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dai, Z.;McReynolds, A.;Whitehill, J.
- 通讯作者:Whitehill, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Whitehill其他文献
Automated Evaluation of Classroom Instructional Support with LLMs and BoWs: Connecting Global Predictions to Specific Feedback
法学硕士和学士课堂教学支持的自动评估:将全局预测与具体反馈联系起来
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jacob Whitehill;Jennifer LoCasale - 通讯作者:
Jennifer LoCasale
Automated Facial Expression Measurement: recent Applications to Basic Research in Human Behavior, Learning, and Education
自动面部表情测量:人类行为、学习和教育基础研究的最新应用
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
M. Bartlett;Jacob Whitehill - 通讯作者:
Jacob Whitehill
Building a more effective teaching robot using apprenticeship learning
利用学徒学习构建更有效的教学机器人
- DOI:
10.1109/devlrn.2008.4640831 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Ruvolo;Jacob Whitehill;Marjo Vimes;J. Movellan - 通讯作者:
J. Movellan
Jacob Whitehill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Whitehill', 18)}}的其他基金
CAREER: Developing New Scientific Instruments for Classroom Observation: A Multi-modal Machine Learning Approach
职业:开发用于课堂观察的新科学仪器:多模式机器学习方法
- 批准号:
2046505 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
- 批准号:
2339619 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
From corpus to target data as steps for automatic assessment of L2 speech: L2 French phonological lexicon of Japanese learners
从语料库到目标数据作为 L2 语音自动评估的步骤:日语学习者的 L2 法语语音词典
- 批准号:
23K20100 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reel Voices: Empowering Language Learners Through Filmmaking
Reel Voices:通过电影制作赋予语言学习者权力
- 批准号:
24K04057 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementing Communication Strategies and Evaluating Their Effectiveness in Paired Speaking Assessments Among Novice EFL Learners
在英语新手的配对口语评估中实施沟通策略并评估其有效性
- 批准号:
24K04071 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Doctoral Dissertation Research: Effects of non-verbal working memory and spoken first language proficiency on sign language acquisition by deaf second language learners
博士论文研究:非语言工作记忆和第一语言口语能力对聋哑第二语言学习者手语习得的影响
- 批准号:
2336589 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Preparing Science Teachers To Engage Multilingual Learners in Scientific Argumentation Through Mixed-Reality Simulations
让科学教师做好准备,通过混合现实模拟让多语言学习者参与科学论证
- 批准号:
2321205 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Academic Lecture Note-Taking and Summarizing: Investigating the Challenges and Effective Teaching Methods for EFL Learners
学术讲座笔记与总结:调查英语学习者面临的挑战和有效的教学方法
- 批准号:
23K00741 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Phonetic studies of Hawaiian speakers and learners
夏威夷语使用者和学习者的语音研究
- 批准号:
2314493 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable, on-demand, research-based, help-seeking innovation for learners in virtual and recorded training programs
SBIR 第一阶段:通过虚拟和录制的培训项目为学习者提供可扩展、按需、基于研究、寻求帮助的创新
- 批准号:
2151406 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant