CAREER: Developing New Scientific Instruments for Classroom Observation: A Multi-modal Machine Learning Approach
职业:开发用于课堂观察的新科学仪器:多模式机器学习方法
基本信息
- 批准号:2046505
- 负责人:
- 金额:$ 69.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will harness artificial intelligence (AI) to improve both the quality of classroom teaching and the precision of educational research by providing teachers and scientists with new methods of observing the inter-personal dynamics between teachers, students, and their peers. Decades of research have demonstrated that the quality and quantity of interactions between teachers and students can have a major impact on student engagement, attitudes toward learning, and downstream academic and socio-emotional outcomes. Despite the progress that has been made in studying classroom interactions and their impact on students' learning, as well as in developing effective interventions to help teachers teach better, the status quo of educational measurement is currently a significant roadblock to further progress in both educational research and teacher training. Specific problems with contemporary methods include ignoring the possibly different classroom experiences of individual students and minority subgroups, and providing only limited actionable feedback for teachers. This project will depart from standard observation protocols, which typically describe the "average" classroom experience of the "average" learner, and instead focus on characterizing over time the fine-grained experiences of every student in the classroom. The scientific instruments developed during this project will also be used to help teachers to identify potential biases when interacting with particular students in their classes.To achieve these goals, the team will make advances in multi-modal (vision, speech, natural language) machine learning to devise new architectures that analyze videos of school classrooms and perceive fine-grained interactions. The envisioned AI systems will (1) identify who is interacting with whom, when, and how in a school classroom; (2) find the key events during a teaching session that are most important for teacher feedback; and (3) summarize interactions for each student along different dimensions to find students who need more attention and to uncover possible bias. Based on these new analyses, the team will develop (4) predictive models to estimate socioemotional and academic outcomes outcomes. Finally, the team will (5) devise new teacher training experiences that help teachers to perceive classroom dynamics more accurately. The project will result in contributions to the fields of computer vision, speech analysis, machine learning, and education, and will offer new insights into automatic speaker diarization, person tracking, sentiment analysis, and classroom observation analysis. The scientific and educational agendas provide opportunities for inter-disciplinary training of research assistants; they will also enable and benefit from collaboration between the research team and teachers in both Massachusetts and Virginia.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将利用人工智能(AI)提高课堂教学质量和教育研究的准确性,为教师和科学家提供观察教师、学生和同龄人之间人际关系动态的新方法。几十年的研究表明,师生互动的质量和数量会对学生的参与度、学习态度以及下游的学术和社会情感结果产生重大影响。尽管在研究课堂互动及其对学生学习的影响,以及制定有效的干预措施以帮助教师更好地教学方面取得了进展,但教育测量的现状目前是教育研究和教师培训进一步取得进展的重大障碍。当代方法的具体问题包括忽视个别学生和少数群体可能不同的课堂体验,并仅为教师提供有限的可操作反馈。该项目将脱离标准观察协议,标准观察协议通常描述“普通”学习者的“平均”课堂体验,而是专注于描述课堂上每个学生的细粒度体验。在这个项目中开发的科学仪器也将用于帮助教师在与课堂上的特定学生互动时识别潜在的偏见。为了实现这些目标,该团队将在多模态(视觉、语音、自然语言)机器学习方面取得进展,以设计新的架构,分析学校教室的视频并感知细粒度的交互。设想中的人工智能系统将(1)识别谁在学校教室里与谁、何时以及如何互动;(2)找出教学过程中最重要的关键事件,以供教师反馈;(3)总结每个学生在不同维度上的互动,发现需要更多关注的学生,并发现可能存在的偏见。基于这些新的分析,该团队将开发(4)预测模型来估计社会情感和学术成果。最后,该团队将(5)设计新的教师培训体验,帮助教师更准确地感知课堂动态。该项目将为计算机视觉、语音分析、机器学习和教育领域做出贡献,并将为自动说话人化、人物跟踪、情感分析和课堂观察分析提供新的见解。科学和教育议程为研究助理的跨学科培训提供了机会;他们还将从马萨诸塞州和弗吉尼亚州的研究团队和教师之间的合作中受益。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In Search of Negative Moments: Multi-Modal Analysis of Teacher Negativity in Classroom Observation Videos
寻找消极时刻:课堂观察视频中教师消极情绪的多模态分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dai, Z.;McReynolds, A.;Whitehill, J.
- 通讯作者:Whitehill, J.
Compositional clustering: Applications to multi-label object recognition and speaker identification
- DOI:10.1016/j.patcog.2023.109829
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Zeqian Li;Xinlu He;J. Whitehill
- 通讯作者:Zeqian Li;Xinlu He;J. Whitehill
Can the Mathematical Correctness of Object Configurations Affect the Accuracy of Their Perception?
物体配置的数学正确性会影响其感知的准确性吗?
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jiang, H.;Li, Z.;Whitehill, J.
- 通讯作者:Whitehill, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Whitehill其他文献
Automated Evaluation of Classroom Instructional Support with LLMs and BoWs: Connecting Global Predictions to Specific Feedback
法学硕士和学士课堂教学支持的自动评估:将全局预测与具体反馈联系起来
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jacob Whitehill;Jennifer LoCasale - 通讯作者:
Jennifer LoCasale
Automated Facial Expression Measurement: recent Applications to Basic Research in Human Behavior, Learning, and Education
自动面部表情测量:人类行为、学习和教育基础研究的最新应用
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
M. Bartlett;Jacob Whitehill - 通讯作者:
Jacob Whitehill
Building a more effective teaching robot using apprenticeship learning
利用学徒学习构建更有效的教学机器人
- DOI:
10.1109/devlrn.2008.4640831 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Ruvolo;Jacob Whitehill;Marjo Vimes;J. Movellan - 通讯作者:
J. Movellan
Jacob Whitehill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Whitehill', 18)}}的其他基金
Teachers are the Learners: Providing Automated Feedback on Classroom Inter-Personal Dynamics
教师是学习者:提供有关课堂人际动态的自动反馈
- 批准号:
1822768 - 财政年份:2018
- 资助金额:
$ 69.2万 - 项目类别:
Standard Grant
相似海外基金
Developing and Testing Innovations: Computer Science Through Engineering Design in New York
开发和测试创新:纽约的工程设计中的计算机科学
- 批准号:
2341962 - 财政年份:2024
- 资助金额:
$ 69.2万 - 项目类别:
Standard Grant
Developing new tests and treatments to enable prevention of osteoarthritis.
开发新的测试和治疗方法以预防骨关节炎。
- 批准号:
MR/Y003470/1 - 财政年份:2024
- 资助金额:
$ 69.2万 - 项目类别:
Fellowship
Developing a new method for the identification of cancer in archaeological populations
开发一种鉴定考古群体中癌症的新方法
- 批准号:
2341415 - 财政年份:2024
- 资助金额:
$ 69.2万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Developing new approaches and structural materials to rebuild damaged Ukrainian infrastructure with environmental sustainability considerations
EAGER:IMPRESS-U:开发新方法和结构材料,在考虑环境可持续性的情况下重建受损的乌克兰基础设施
- 批准号:
2412196 - 财政年份:2024
- 资助金额:
$ 69.2万 - 项目类别:
Standard Grant
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
- 批准号:
BB/Z514305/1 - 财政年份:2024
- 资助金额:
$ 69.2万 - 项目类别:
Research Grant
GOALI: Developing New Hydrogen Isotope Exchange Strategies for Isotope Labelling of Pharmaceuticals
目标:开发用于药物同位素标记的新氢同位素交换策略
- 批准号:
2247057 - 财政年份:2023
- 资助金额:
$ 69.2万 - 项目类别:
Standard Grant
Developing and exploring methods to understand human-nature interactions in urban areas using new forms of big data
利用新形式的大数据开发和探索理解城市地区人与自然相互作用的方法
- 批准号:
ES/W012979/1 - 财政年份:2023
- 资助金额:
$ 69.2万 - 项目类别:
Research Grant
Developing a new risk and needs assessment tool for young people who have displayed harmful sexual behaviour
为表现出有害性行为的年轻人开发新的风险和需求评估工具
- 批准号:
2886506 - 财政年份:2023
- 资助金额:
$ 69.2万 - 项目类别:
Studentship
Developing new therapeutic strategies for brain metastasis
开发脑转移的新治疗策略
- 批准号:
10578405 - 财政年份:2023
- 资助金额:
$ 69.2万 - 项目类别:
Developing and evaluating new measures of family availability to provide care to people with dementia
制定和评估家庭可用性的新衡量标准,为痴呆症患者提供护理
- 批准号:
10728725 - 财政年份:2023
- 资助金额:
$ 69.2万 - 项目类别: