SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
基本信息
- 批准号:1822972
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New large-scale high performance computing systems being developed for the national labs and by US industry, combine heterogeneous memory components, accelerators and accelerator-near memory, and programmable high-performance interconnects. These memory-rich designs are attractive as they provide the compute-near-data capacity needed for improving the time to scientific discovery, and for supporting new classes of latency-sensitive data-intensive applications. However, existing software stacks are not equipped to deal with the heterogeneity and complexity of these machine designs, which impacts application performance and machine efficiency. The Memory Fabric (MF) solution developed in this project provides new abstractions and mechanisms that permit the systems software stacks to gain deeper insight into applications' data usage patterns and requirements, and to coordinate the decisions concerning how data should be distributed across different memories, or exchanged along different interconnection paths. The Memory Fabric (MF) architecture introduces new data-centric abstractions, memory object and memory object flow, and accompanying memory and communications management methods. The higher-level information captured in the new abstractions empowers the MF runtime to better guide the underlying memory and interconnect management, and to mask the complexities of the underlying memory substrate. Additional benefits are derived from use of near-memory-fabric computation, including via dynamically inserted application-specific codes, which further specialize and accelerate the operations carried out by MF. MF is evaluated using several important application domains, including big data learning and analytics, and traditional high-performance scientific simulations. Its benefits include gains in application performance and resource efficiency, while shielding applications and application developers from the underlying machine details.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国工业界正在为国家实验室开发的新型大规模高性能计算系统,结合了联合收割机异构存储器组件、加速器和加速器近存储器以及可编程高性能互连。这些内存丰富的设计是有吸引力的,因为它们提供了所需的计算近数据能力,以提高科学发现的时间,并支持新类别的延迟敏感的数据密集型应用程序。然而,现有的软件栈不具备处理这些机器设计的异构性和复杂性,这影响了应用性能和机器效率。该项目开发的Memory Fabric(MF)解决方案提供了新的抽象和机制,允许系统软件堆栈更深入地了解应用程序的数据使用模式和要求,并协调有关数据应如何在不同存储器中分布或沿着不同互连路径交换的决策。内存结构(MF)架构引入了新的以数据为中心的抽象、内存对象和内存对象流,以及伴随的内存和通信管理方法。在新的抽象中捕获的更高级别的信息使MF运行时能够更好地指导底层存储器和互连管理,并掩盖底层存储器基底的复杂性。额外的好处来自于近存储器结构计算的使用,包括经由动态插入的应用特定代码,其进一步专门化和加速由MF执行的操作。MF使用几个重要的应用领域进行评估,包括大数据学习和分析以及传统的高性能科学模拟。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence
- DOI:10.1145/3307681.3325398
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Thaleia Dimitra Doudali;S. Blagodurov;Abhinav Vishnu;S. Gurumurthi;Ada Gavrilovska
- 通讯作者:Thaleia Dimitra Doudali;S. Blagodurov;Abhinav Vishnu;S. Gurumurthi;Ada Gavrilovska
Mnemo: Boosting Memory Cost Efficiency in Hybrid Memory Systems
Mnemo:提高混合内存系统的内存成本效率
- DOI:10.1109/ipdpsw.2019.00080
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Doudali, Thaleia Dimitra;Gavrilovska, Ada
- 通讯作者:Gavrilovska, Ada
Fast in-memory CRIU for docker containers
适用于 docker 容器的快速内存 CRIU
- DOI:10.1145/3357526.3357542
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Venkatesh, Ranjan Sarpangala;Smejkal, Till;Milojicic, Dejan S.;Gavrilovska, Ada
- 通讯作者:Gavrilovska, Ada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ada Gavrilovska其他文献
Attaining High Performance Communications : A Vertical Approach
- DOI:
10.1201/b10249 - 发表时间:
2009-09 - 期刊:
- 影响因子:0
- 作者:
Ada Gavrilovska - 通讯作者:
Ada Gavrilovska
HEaRS: A Hierarchical Energy-Aware Resource Scheduler for Virtualized Data Centers
HEaRS:用于虚拟化数据中心的分层能源感知资源调度程序
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hui Chen;Meina Song;Junde Song;Ada Gavrilovska;K. Schwan - 通讯作者:
K. Schwan
Using active NVRAM for I/O staging
使用主动 NVRAM 进行 I/O 分级
- DOI:
10.1145/2110205.2110209 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Sudarsun Kannan;Ada Gavrilovska;K. Schwan;D. Milojicic;V. Talwar - 通讯作者:
V. Talwar
HeteroOS: OS Design for Heterogeneous Memory Management in Datacenters
HeteroOS:数据中心异构内存管理的操作系统设计
- DOI:
10.1145/3273982.3273985 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Sudarsun Kannan;Ada Gavrilovska;Vishal Gupta;K. Schwan - 通讯作者:
K. Schwan
Heterogeneous Memory Management in Datacenter
数据中心的异构内存管理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Sudarsun Kannan;Ada Gavrilovska;Vishal Gupta;K. Schwan - 通讯作者:
K. Schwan
Ada Gavrilovska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ada Gavrilovska', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2022 ACM Symposium on Cloud Computing (ACM SoCC).
旅行:2022 年 ACM 云计算研讨会 (ACM SoCC) 的 NSF 学生旅行补助金。
- 批准号:
2246744 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Scalable Specialization in Distributed Edge-Cloud Systems – The Extended Reality Case
协作研究:PPoSS:大型:分布式边缘云系统的可扩展专业化 — 扩展现实案例
- 批准号:
2217070 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CNS Core: Small: Bridging the Silos of Edge Computing with Connected Namespaces
CNS 核心:小型:通过互联命名空间弥合边缘计算孤岛
- 批准号:
1909769 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
I-Corps: AirBox: Bringing the Cloud to the Edge
I-Corps:AirBox:将云带到边缘
- 批准号:
1638582 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Enhancing Cloud Performance with On-Demand Isolation
CSR:小型:协作研究:通过按需隔离增强云性能
- 批准号:
1422927 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR: Small: PowerMeter: Tracking Energy Usage in the Clouds
CSR:小型:PowerMeter:跟踪云中的能源使用情况
- 批准号:
1217577 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Resource Containers: Addressing Resource Heterogeneity for Cloud4Home Applications
EAGER:资源容器:解决 Cloud4Home 应用程序的资源异构性
- 批准号:
1148600 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant