Collaborative Research: Deep Inference - Artificial Intelligence for Structural Estimation
合作研究:深度推理 - 用于结构估计的人工智能
基本信息
- 批准号:1824304
- 负责人:
- 金额:$ 8.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to evaluate the effect of economic policies such as extended health care coverage or changes in the minimum wage, economists use structural models which powerfully describe the mechanism at work, but estimating structural models is typically challenging. A main tool for estimating such structural models is inference via simulation. For different parametrizations of the model, synthetic data is generated via the model, and the parameters generating data that most closely resembles observed data are used as estimates. Recent modern artificial intelligence methods such as deep learning for image recognition are based on this same principle. These methods have been achieving impressive results over the past years. Therefore, this research takes advantage of such powerful tools in modern pattern recognition for structural estimation in economics. This research considers a set-up where individual outcomes are a known function of exogenous variables and an error whose distribution is known up to a finite dimensional vector of parameters. The goal is to estimate the finite dimensional parameter. The investigators adopt the generative adversarial network approach (GANs) to find the parameter value such that given a discriminator, a device that can accurately distinguish data generated using the model from real data, is unable to do so when the data is generated according to such parameter value. The method developed in this research differs from other simulation-based minimum distance estimators in that the distance is adaptive. That is, the discriminator learns the features of the data that are best at distinguishing real from synthetic data as opposed to hard-coding what features of the data to match. This adaptability property has proven powerful in pattern recognition tasks. In structural estimation, adaptability can translate into alleviating the curse of dimensionality, and obtaining parameters that are able to more closely match entire distributions of data, as opposed to a set of pre-specified moments. This estimation framework should be useful in applications were distributional effects and heterogeneity are first order to evaluate the effect of a particular policy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了评估经济政策的影响,如扩大医疗保险覆盖范围或最低工资的变化,经济学家使用结构模型,有力地描述了工作机制,但估计结构模型通常具有挑战性。 估计这种结构模型的主要工具是通过模拟进行推断。 对于模型的不同参数化,通过模型生成合成数据,并且生成与观察数据最接近的数据的参数用作估计值。最近的现代人工智能方法,如用于图像识别的深度学习,都是基于同样的原理。这些方法在过去几年中取得了令人印象深刻的成果。因此,本研究利用现代模式识别中的这些强大工具来进行经济学中的结构估计。本研究考虑了一个设置,其中个人的结果是一个已知的外生变量的函数和一个错误,其分布是已知的一个有限维向量的参数。目标是估计有限维参数。研究人员采用生成对抗网络方法(GANs)来找到参数值,使得给定一个参数,一个可以准确区分使用模型生成的数据与真实的数据的设备,在根据这样的参数值生成数据时无法做到这一点。在这项研究中开发的方法不同于其他基于模拟的最小距离估计的距离是自适应的。也就是说,与硬编码要匹配的数据特征相反,SVM学习最善于区分真实的和合成数据的数据特征。这种适应性属性在模式识别任务中已经证明是强大的。在结构估计中,适应性可以转化为减轻维数灾难,并获得能够更紧密地匹配整个数据分布的参数,而不是一组预先指定的矩。这个估计框架应该是有用的应用程序分布的影响和异质性是第一个订单,以评估一个特定的policy.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Manresa其他文献
Elena Manresa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Manresa', 18)}}的其他基金
Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
- 批准号:
1817476 - 财政年份:2017
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
- 批准号:
1658913 - 财政年份:2017
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341425 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant