Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
基本信息
- 批准号:1658913
- 负责人:
- 金额:$ 10.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A vast empirical literature has demonstrated that firms, workers, schools, or banks differ from each other, and that accounting for agent heterogeneity in economic models is often key for accurate quantitative predictions. This project develops new techniques to capture relevant sources of heterogeneity which are not directly observed in the data, but can be inferred using repeated observations of individual choices or other outcomes. Flexibly modeling unobserved differences between agents with individual-specific parameters raises important challenges in terms of computation and statistical inference. The approach developed in this project is based on dimension reduction methods whereby heterogeneous agents are grouped into a small number of types. Discrete methods provide a way to reduce the dimensionality of heterogeneity. This may be advantageous for both computational and statistical reasons. However, existing methods such as finite mixtures face computational challenges, and they are mostly studied under the strong assumption that heterogeneity is discrete in the population. The investigators broaden the scope of discrete methods, by developing computationally tractable two-step estimators and studying their properties in the absence of such substantive assumptions. This research also illustrates the usefulness of these methods in applications, particularly in structural models where allowing for unobserved heterogeneity raises important challenges, and in models with two-sided heterogeneity.
大量的实证文献表明,企业、工人、学校或银行彼此不同,而在经济模型中考虑代理异质性往往是准确定量预测的关键。该项目开发了新的技术来捕捉相关的异质性来源,这些来源在数据中没有直接观察到,但可以通过对个人选择或其他结果的重复观察来推断。智能体与个体特定参数之间未观察到的差异的合理建模在计算和统计推断方面提出了重要的挑战。该项目中开发的方法基于降维方法,将异构代理分组为少量类型。 离散方法提供了一种降低异质性维数的方法。出于计算和统计原因,这可能是有利的。然而,现有的方法,如有限混合面临计算的挑战,他们大多是在强假设下,异质性是离散的人口研究。研究人员扩大了离散方法的范围,通过开发计算上易于处理的两步估计量,并在没有这种实质性假设的情况下研究它们的性质。这项研究还说明了这些方法在应用中的有用性,特别是在结构模型中,允许未观察到的异质性提出了重要的挑战,并在模型与双侧异质性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Manresa其他文献
Elena Manresa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Manresa', 18)}}的其他基金
Collaborative Research: Deep Inference - Artificial Intelligence for Structural Estimation
合作研究:深度推理 - 用于结构估计的人工智能
- 批准号:
1824304 - 财政年份:2018
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
- 批准号:
1817476 - 财政年份:2017
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306439 - 财政年份:2023
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2147546 - 财政年份:2022
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Collaborative Research: Adding a Magnetic Dimension to M-dwarf Stars Observed by APOGEE
合作研究:为 APOGEE 观测到的 M 矮星添加磁维度
- 批准号:
2009172 - 财政年份:2020
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2015447 - 财政年份:2020
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Collaborative Research: Adding a Magnetic Dimension to M-dwarf Stars Observed by APOGEE
合作研究:为 APOGEE 观测到的 M 矮星添加磁维度
- 批准号:
2009507 - 财政年份:2020
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2014279 - 财政年份:2020
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
- 批准号:
1923145 - 财政年份:2019
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
- 批准号:
1923247 - 财政年份:2019
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
- 批准号:
1817476 - 财政年份:2017
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant