Understanding How Aluminum Moves Around a Friction Stir Welding Tool in order to Prevent Welding Defects

了解铝如何在搅拌摩擦焊工具周围移动以防止焊接缺陷

基本信息

  • 批准号:
    1826104
  • 负责人:
  • 金额:
    $ 41.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

This award will support fundamental scientific research that will investigate how aluminum moves around a friction stir welding tool and how this movement influences the formation of sub-surface defects (voids). Due to its many advantages over other welding processes, friction stir welding has rapidly gained popularity in numerous manufacturing industries. However, certain limitations have slowed its mass implementation. This research seeks to address a lack of knowledge about two limitations in friction stir welding: (1) the need for costly post weld inspection of sub-surface defects in high-reliability applications (for example: defense and aerospace industries), and (2) the desire to increase processing speed to allow for high-volume production (for example: automotive industry). Faster welding speeds increase the likelihood of defect formation. A fundamental understanding of the precise mechanisms of material flow around the friction stir tool and its role in sub-surface defect formation is currently lacking. This research will generate the knowledge necessary to help U.S. manufacturers predict defect formation, hence allow them to design a friction stir welding process that produces defect-free welds. Addressing the aforementioned limitations will greatly expedite the mass implementation of this joining method, which will have a positive impact on U.S. manufacturing, the U.S. economy, and National Security. The award will also facilitate training of the future workforce as students across all levels will gain exposure to and experience in advanced joining technologies. Knowledge generated from this project will be distributed publicly through conference presentations, journal articles, industry tours, and open house engineering expositions.The goal of this research is to generate a fundamental understanding of the physics behind the intermittent movement (an extrusion-like process) of metal around the friction stir tool once per tool revolution. This phenomenon has been widely reported in the manufacturing engineering community by means of force measurements and by studying weld cross-sections after completing the weld. However, an understanding of why this intermittent material movement occurs and direct in-process observations do not exist. One leading hypothesis is that a cavity opens up in the wake of the advancing tool and that material is subsequently extruded into this cavity during each rotation of the tool. In a good welding condition, this cavity is completely filled. However, when there is a breakdown in the material flow, the cavity is not filled completely and a defect (void) remains. This hypothesis will be tested by means of novel, in-process proton radiography of the friction stir welding process of an aluminum alloy. Proton radiography at the Los Alamos Neutron Science Center provides the capability of producing a series of radiographic images (like x-rays) of the weld zone that will show whether or not a cavity is forming and filling. The knowledge gained through this physical experimentation, combined with other experiments conducted at the University of Madison-Wisconsin, will drive the numerical simulation of the intermittent flow phenomenon. Simulation of this phenomenon is largely absent from the published literature. In this work, the complex material flow and cavity formation and filing processes will be modeled and simulated using advanced Lagrangian based numerical techniques. Ultimately, this will provide the means to predict defect formation, and design measures to avoid it during production.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持基础科学研究,这些研究将调查铝如何在搅拌摩擦焊接工具周围移动,以及这种移动如何影响亚表面缺陷(空洞)的形成。搅拌摩擦焊由于具有其他焊接工艺所不具备的诸多优点,在众多制造业中迅速得到普及。然而,某些限制减缓了它的大规模实施。这项研究旨在解决人们对搅拌摩擦焊接的两个局限性缺乏了解的问题:(1)在高可靠性应用中(例如:国防和航空航天工业)需要昂贵的焊后亚表面缺陷检查;(2)需要提高处理速度以实现大批量生产(例如:汽车工业)。较快的焊接速度增加了缺陷形成的可能性。目前对搅拌摩擦工具周围材料流动的精确机制及其在亚表面缺陷形成中的作用缺乏基本的了解。这项研究将产生必要的知识,帮助美国制造商预测缺陷形成,从而使他们能够设计出一种能够生产无缺陷焊缝的搅拌摩擦焊接工艺。解决上述限制将大大加快这种加入方法的大规模实施,这将对美国制造业、美国经济和国家安全产生积极影响。该奖项还将促进未来劳动力的培训,因为所有级别的学生都将接触到先进的加入技术并获得经验。从这个项目中产生的知识将通过会议演讲、期刊文章、行业参观和开放参观工程演示来公开传播。这项研究的目标是对金属围绕摩擦搅拌工具的间歇运动(类似挤压的过程)背后的物理原理有一个基本的了解,每次工具旋转一次。通过力测量和完成焊接后对焊缝横截面的研究,这种现象在制造工程界已被广泛报道。然而,对于为什么会发生这种间歇性的材料移动和直接的过程中观察,还不存在理解。一种主要的假设是,在推进工具之后,空腔打开,随后在工具的每次旋转过程中,材料被挤出到这个空腔中。在良好的焊接条件下,这个空洞完全填满了。然而,当材料流动出现故障时,空腔未被完全填充,仍存在缺陷(空洞)。这一假设将通过一种铝合金搅拌摩擦焊接过程的新型过程中质子射线照相来验证。洛斯阿拉莫斯中子科学中心的质子射线照相术提供了产生一系列焊接区的射线图像(如x射线)的能力,这些图像将显示空洞是否正在形成和填充。通过物理实验获得的知识,结合在麦迪逊-威斯康星大学进行的其他实验,将推动间歇流现象的数值模拟。这一现象的模拟在已出版的文献中基本上是没有的。在这项工作中,将使用先进的基于拉格朗日的数值技术来模拟和模拟复杂的材料流动和空洞的形成和修复过程。最终,这将提供预测缺陷形成的手段,并设计在生产过程中避免缺陷的措施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Tool Runout on Force Measurement During Internal Void Monitoring for Friction Stir Welding of 6061-T6 Aluminum
Novel Correlations Between Process Forces and Void Morphology for Effective Detection and Minimization of Voids During Friction Stir Welding
工艺力与空洞形态之间的新关联,可有效检测搅拌摩擦焊过程中的空洞并将其最小化
Numerical Investigation Into the Influence of Alloy Type and Thermo-Mechanics on Void Formation in Friction Stir Welding of Aluminum Alloys
合金类型和热力学对铝合金搅拌摩擦焊空洞形成影响的数值研究
  • DOI:
    10.1115/1.4062270
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ansari, Mohammad Ali;Agiwal, Hemant;Franke, Daniel;Zinn, Michael;Pfefferkorn, Frank E.;Rudraraju, Shiva
  • 通讯作者:
    Rudraraju, Shiva
Understanding process force transients with application towards defect detection during friction stir welding of aluminum alloys
  • DOI:
    10.1016/j.jmapro.2020.03.003
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Franke, Daniel;Rudraraju, Shiva;Pfefferkorn, Frank E.
  • 通讯作者:
    Pfefferkorn, Frank E.
Material flow visualization during friction stir welding using high-speed X-ray imaging
使用高速 X 射线成像实现摩擦搅拌焊接过程中的材料流可视化
  • DOI:
    10.1016/j.mfglet.2022.08.016
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Agiwal, Hemant;Ali Ansari, Mohammad;Franke, Daniel;Faue, Patrick;Clark, Samuel J.;Fezzaa, Kamel;Rudraraju, Shiva;Zinn, Michael;Pfefferkorn, Frank E.
  • 通讯作者:
    Pfefferkorn, Frank E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank Pfefferkorn其他文献

Frank Pfefferkorn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank Pfefferkorn', 18)}}的其他基金

I-Corps: Metal hybrid multi-metal parts made possible by additive manufacturing technology
I-Corps:通过增材制造技术实现金属混合多金属零件
  • 批准号:
    2053109
  • 财政年份:
    2021
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Workshop: Blue Skies Manufacturing Workshop at the 2020 North American Manufacturing Research Conference (NAMRC); Cincinnati, Ohio; June 22-26, 2020
研讨会:2020年北美制造研究会议(NAMRC)的蓝天制造研讨会;
  • 批准号:
    1937865
  • 财政年份:
    2019
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Student Support: 2018 Manufacturing Science and Engineering Conference and 46th North American Manufacturing Research Conference; College Station, Texas; June 18-22, 2018
学生支持:2018制造科学与工程会议暨第46届北美制造研究会议;
  • 批准号:
    1764172
  • 财政年份:
    2018
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
NSF-DFG: Laser Finishing of the Multi-Scale Surface Structure of Additive Manufactured Parts
NSF-DFG:增材制造零件多尺度表面结构的激光精加工
  • 批准号:
    1727366
  • 财政年份:
    2017
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Combining Laser Melting, Alloying, and Nanoparticles to Make Harder and Smoother Surfaces on Metal Alloys
结合激光熔化、合金化和纳米颗粒,使金属合金表面更硬、更光滑
  • 批准号:
    1462295
  • 财政年份:
    2015
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Support for Student and PostDoc Participation in the 5th International Conference on MicroManufacturing (ICOMM/4M 2010)
支持学生和博士后参加第五届国际微制造会议 (ICOMM/4M 2010)
  • 批准号:
    1013613
  • 财政年份:
    2010
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
GOALI: Enabling Friction Stir Welding in Unstructured Environments Through Process Identification and Shared Control
目标:通过过程识别和共享控制在非结构化环境中实现搅拌摩擦焊接
  • 批准号:
    0824879
  • 财政年份:
    2008
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Local Flow Boiling Heat Transfer on Micro-Pin-Fins Using Thin-Film Temperature/Heat Flux Sensor Arrays
合作研究:使用薄膜温度/热通量传感器阵列研究微针翅片上的局部流动沸腾传热
  • 批准号:
    0729693
  • 财政年份:
    2007
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Experiments and Modeling of Nanocrystalline Diamond Coatings for Dry Machining
合作研究:干式加工用纳米晶金刚石涂层的多尺度实验和建模
  • 批准号:
    0700794
  • 财政年份:
    2007
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Studentship
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了