RII Track-2 FEC: Building Field-Based Ecophysiological Genome-to-Phenome Prediction

RII Track-2 FEC:构建基于现场的生态生理基因组到现象组预测

基本信息

  • 批准号:
    1826820
  • 负责人:
  • 金额:
    $ 400万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description:It is widely agreed that agricultural crop production is not growing to meet the needs of the increasing human population. This project brings together researchers from the Kansas State University, Oklahoma State University, and Langston University (a Historically Black University), to develop a new way to model and predict important crop production traits in wheat. One of the greatest challenges of current crop trait prediction is that it falls in an underpopulated borderland between plant physiology, biological engineering, genetics, computational biology, mathematics, statistics, and computer science. Therefore, to bridge this gap, mathematical models will be produced that combine both observational data using Unmanned Aerial Vehicles and robots, and genetics data. These new models are expected to simplify crop modeling for farmers, and will aid in farm management, and can easily be applied to other crops and in other environments. Many additional benefits will also accrue. First, commonalities between these mathematical models will mean that results will readily transfer to many other crops. Moreover, the benefits of combining genetic and observational data in this way to predict crop traits will aid on-farm crop management, enhancing food security. Educational programs for undergraduates, graduate students, and faculty in these disciplines will enlarge a globally competitive workforce. Involvement of key corporate partners will also speed research transfer to the private sector both directly and by creating a market for project trainees. Finally, the sensing/measuring devices to be bought or built will enhance the ability of partners to conduct a wide range of related, data-intensive research. Technical Description:It is widely agreed that agricultural crop production is not on track to meet the production doubling needed by 2050 for humanity to avoid major food security disruption. Farmers need genetically-informed analytics to predict the outcomes of management options amongst which they may choose and apply in their unique field environments. This project brings together researchers from the sity of Kansas State University, Oklahoma State University, and Langston University (a Historically Black University), and presents new genetically- and physiologically-informed proof-of-concept wheat physiologically-based crop models (CMs). These CMs will link to state-of-the-art field monitoring technologies with genomic data, thus rebalancing direct monitoring vs. indirect model calculation. The data will include: (1) airborne imagery to extract morphological features, canopy temperatures, and light interception. (2) Multivariate soil profile data will be collected by robots at 2-30 cm (horizontal/vertical) and three-day temporal resolution. (3) Gene expression data on selected double haploid lines over 64 combinations of locations, dates, and years will aid in model building. (4) CM and quantitative genetics integration will also be aided by expanding the number of genotyped wheat lines within the Kansas and Oklahoma breeding programs. Such large data sets ordinarily pose computational challenges for models as complex as CMs. In contrast to extant CMs, the new models will efficiently combine differential equation solvers, maximum entropy and Bayesian methods, and high-performance computing. The results will be methods able to predict the traits of novel genotypes in novel environments not used to construct the models. Many additional benefits will also accrue. First, commonalities between CMs will mean that results will readily transfer to many other crops. Moreover, increased genome to phenome prediction accuracy will aid on-farm crop management, enhancing food security. Educational programs for undergraduates, graduate students, and faculty in these disciplines will create and enlarge a globally competitive workforce. Involving key corporate partners will also speed research transfer directly and by creating a market for project trainees. Finally, the sensing/measuring devices to be bought or built will enhance partner ability to conduct a wide range of related, data-intensive research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:人们普遍认为,农作物产量的增长不能满足不断增长的人口的需求。 该项目汇集了来自堪萨斯州立大学、俄克拉荷马州州立大学和兰斯顿大学(一所历史上的黑人大学)的研究人员,以开发一种新的方法来建模和预测小麦的重要作物生产性状。 当前作物性状预测面临的最大挑战之一是,它福尔斯处于植物生理学、生物工程、遗传学、计算生物学、数学、统计学和计算机科学之间的边缘地带。因此,为了弥合这一差距,将建立数学模型,将联合收割机使用无人机和机器人的观测数据与遗传学数据结合起来。 这些新模型有望简化农民的作物建模,有助于农场管理,并可轻松应用于其他作物和其他环境。 许多额外的好处也将随之而来。 首先,这些数学模型之间的共性将意味着结果将很容易转移到许多其他作物。此外,以这种方式结合遗传和观测数据来预测作物性状的好处将有助于农田作物管理,提高粮食安全。 针对这些学科的本科生、研究生和教师的教育计划将扩大具有全球竞争力的劳动力队伍。主要公司伙伴的参与也将直接或通过为项目受训人员创造市场,加速研究成果向私营部门的转移。 最后,购买或建造的传感/测量设备将增强合作伙伴进行广泛相关的数据密集型研究的能力。人们普遍认为,农业作物生产无法实现到2050年人类避免粮食安全受到重大破坏所需的产量翻一番。农民需要遗传信息分析来预测管理选项的结果,他们可以在其中选择并应用于其独特的田间环境。该项目汇集了来自堪萨斯州立大学、俄克拉荷马州州立大学和兰斯顿大学(一所历史上的黑人大学)的研究人员,并提出了新的遗传和生理信息的概念验证小麦生理作物模型(CM)。 这些CM将通过基因组数据与最先进的现场监测技术相连接,从而重新平衡直接监测与间接模型计算。 数据将包括:(1)机载图像,以提取形态特征,冠层温度和光截获。(2)多变量土壤剖面数据将由机器人以2-30厘米(水平/垂直)和三天时间分辨率收集。 (3)在64个地点、日期和年份的组合上选择的双单倍体品系的基因表达数据将有助于模型的建立。(4)在堪萨斯和俄克拉荷马州的育种计划中,还将通过扩大基因型小麦品系的数量来帮助CM和数量遗传学的整合。 如此大的数据集通常会对像CM这样复杂的模型提出计算挑战。 与现有的CM相比,新模型将有效地结合联合收割机微分方程求解器,最大熵和贝叶斯方法,以及高性能计算。 这些结果将是能够在新环境中预测新基因型性状的方法,而不是用于构建模型。许多额外的好处也将随之而来。 第一,CM之间的共性将意味着结果将很容易转移到许多其他作物。此外,提高基因组对表型组的预测准确性将有助于农田作物管理,提高粮食安全。 这些学科的本科生、研究生和教师的教育计划将创造和扩大具有全球竞争力的劳动力。让主要的企业伙伴参与进来,也将直接加快研究成果的转让,并为项目受训人员创造一个市场。 最后,购买或建造的传感/测量设备将提高合作伙伴进行广泛的相关数据密集型研究的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chapter One - The role of artificial intelligence in crop improvement
第一章——人工智能在作物改良中的作用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Negus, K;Welch S;Yu, J.
  • 通讯作者:
    Yu, J.
Predictive Characterization for Seed Morphometric Traits for Genebank Accessions Using Genomic Selection
  • DOI:
    10.3389/fevo.2020.00032
  • 发表时间:
    2020-03-17
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Kehel, Zakaria;Sanchez-Garcia, Miguel;Amril, Ahmed
  • 通讯作者:
    Amril, Ahmed
A hierarchical Bayesian approach to dynamic ordinary differential equations modeling for repeated measures data on wheat growth
小麦生长重复测量数据动态常微分方程建模的分层贝叶斯方法
  • DOI:
    10.1016/j.fcr.2022.108549
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Poudel, Pratishtha;Bello, Nora M.;Lollato, Romulo P.;Alderman, Phillip D.
  • 通讯作者:
    Alderman, Phillip D.
Ecophysiological modeling of yield and yield components in winter wheat using hierarchical Bayesian analysis
使用分层贝叶斯分析建立冬小麦产量和产量组成部分的生态生理模型
  • DOI:
    10.1002/csc2.20652
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Poudel, Pratishtha;Bello, Nora M.;Marburger, David A.;Carver, Brett F.;Liang, Ye;Alderman, Phillip D.
  • 通讯作者:
    Alderman, Phillip D.
A Spatial AI-Based Agricultural Robotic Platform for Wheat Detection and Collision Avoidance
  • DOI:
    10.3390/ai3030042
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sujith Gunturu;Arslan Munir;Hayat Ullah;S. Welch;D. Flippo
  • 通讯作者:
    Sujith Gunturu;Arslan Munir;Hayat Ullah;S. Welch;D. Flippo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Welch其他文献

Combustion Modelling of Pulverized Biomass Particles at High Temperatures
  • DOI:
    10.1016/j.egypro.2015.02.055
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jun Li;Manosh C. Paul;Paul L. Younger;Ian Watson;Mamdud Hossain;Stephen Welch
  • 通讯作者:
    Stephen Welch
Phase II study of oral ridaforolimus in patients with metastatic and/or locally advanced recurrent endometrial cancer: NCIC CTG IND 192.
口服 Ridaforolimus 用于治疗转移性和/或局部晚期复发性子宫内膜癌的 II 期研究:NCIC CTG IND 192。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    45.3
  • 作者:
    H. MacKay;Stephen Welch;Ming;J. Biagi;Laurie Elit;P. Ghatage;Lee Ann Martin;Katia Tonkin;S. Ellard;S. Lau;L. Mcintosh;E. Eisenhauer;A. Oza
  • 通讯作者:
    A. Oza
A numerical investigation of 3D structural behaviour for steel-composite structures under various travelling fire scenarios
在各种移动火灾场景下钢-组合结构三维结构行为的数值研究
  • DOI:
    10.1016/j.engstruct.2022.114587
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Zhuojun Nan;Xu Dai;Haimin Chen;Stephen Welch;Asif Usmani
  • 通讯作者:
    Asif Usmani
Pembrolizumab plus chemotherapy in advanced or recurrent endometrial cancer: overall survival and exploratory analyses of the NRG GY018 phase 3 randomized trial
帕博利珠单抗联合化疗治疗晚期或复发性子宫内膜癌:NRG GY018 期 3 随机试验的总生存期和探索性分析
  • DOI:
    10.1038/s41591-025-03566-1
  • 发表时间:
    2025-03-05
  • 期刊:
  • 影响因子:
    50.000
  • 作者:
    Ramez N. Eskander;Michael W. Sill;Lindsey Beffa;Richard G. Moore;Joanie M. Hope;Fernanda B. Musa;Robert S. Mannel;Mark S. Shahin;Guilherme H. Cantuaria;Eugenia Girda;Elizabeth Lokich;Juraj Kavecansky;Charles A. Leath;Lilian T. Gien;Emily M. Hinchcliff;Shashikant B. Lele;Lisa M. Landrum;Floor Backes;Roisin E. O’Cearbhaill;Tareq Al Baghdadi;Emily K. Hill;Premal H. Thaker;Veena S. John;Stephen Welch;Amanda N. Fader;Matthew A. Powell;Carol Aghajanian
  • 通讯作者:
    Carol Aghajanian
ARTISTRY-7: A phase 3, multicenter study of nemvaleukin alfa in combination with pembrolizumab versus chemotherapy in patients with platinum-resistant epithelial ovarian, fallopian tube, or primary peritoneal cancer (1307)
雅姿-7:一项关于奈玛珠单抗联合帕博利珠单抗与化疗在铂耐药上皮性卵巢癌、输卵管癌或原发性腹膜癌患者中的 3 期、多中心研究(1307)
  • DOI:
    10.1016/j.ygyno.2023.06.210
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Thomas Herzog;John Hays;Joyce Barlin;Joseph Buscema;Noelle Cloven;Lynn Kong;Nidhi Kumar Tyagi;Grainger Lanneau;Beverly Long;Robert Marsh;Shelly Seward;David Starks;Stephen Welch;Kathleen Moore;Panagiotis Konstantinopoulos;Lucy Gilbert;Bradley Monk;David O'Malley;Yangchun Du;Rita Dalal;Jalid Sehouli
  • 通讯作者:
    Jalid Sehouli

Stephen Welch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Welch', 18)}}的其他基金

EAGER SitS: Sustainable Biosensor Integration for Precision Management of Agricultural Soils
EAGER SitS:可持续生物传感器集成,用于农业土壤的精确管理
  • 批准号:
    1841613
  • 财政年份:
    2019
  • 资助金额:
    $ 400万
  • 项目类别:
    Standard Grant
HIGH PERFORMANCE COMPUTING SUPPORT FOR UNITED KINGDOM CONSORTIUM ON TURBULENT REACTING FLOWS (UKCTRF)
为英国湍流反应流联盟 (UKCTRF) 提供高性能计算支持
  • 批准号:
    EP/K025155/1
  • 财政年份:
    2014
  • 资助金额:
    $ 400万
  • 项目类别:
    Research Grant
Prediction of toxic species in fire
火灾中有毒物质的预测
  • 批准号:
    EP/E000150/1
  • 财政年份:
    2007
  • 资助金额:
    $ 400万
  • 项目类别:
    Research Grant
An Instrument Combining Computerized 3D Plant Photogrammetry With Automated Physiological Monitoring
计算机化 3D 植物摄影测量与自动生理监测相结合的仪器
  • 批准号:
    9513549
  • 财政年份:
    1996
  • 资助金额:
    $ 400万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
  • 批准号:
    2316366
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
  • 批准号:
    2316128
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
  • 批准号:
    2316126
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
RII Track-2 FEC: Community-Driven Coastal Climate Research & Solutions for the Resilience of New England Coastal Populations
RII Track-2 FEC:社区驱动的沿海气候研究
  • 批准号:
    2316271
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Supporting rural livelihoods in the water-stressed Central High Plains: Microbial innovations for climate-resilient agriculture (MICRA)
合作研究:RII Track-2 FEC:支持缺水的中部高原地区的农村生计:气候适应型农业的微生物创新 (MICRA)
  • 批准号:
    2316296
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
  • 批准号:
    2316400
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
RII Track-2 FEC: Center for Climate Conscious Agricultural Technologies (CCAT)
RII Track-2 FEC:气候意识农业技术中心 (CCAT)
  • 批准号:
    2316502
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Promoting N2O- and CO2-Relieved Nitrogen Fertilizers for Climate Change-Threatened Midwest Farming and Ranching
合作研究:RII Track-2 FEC:为受气候变化威胁的中西部农业和牧场推广不含 N2O 和 CO2 的氮肥
  • 批准号:
    2316482
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
RII-Track 2 FEC: Advancing Social and Environmental Equity through Plastics Research: Education, Innovation, and Inclusion (ASPIRE)
RII-Track 2 FEC:通过塑料研究促进社会和环境公平:教育、创新和包容性 (ASPIRE)
  • 批准号:
    2316351
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
  • 批准号:
    2316367
  • 财政年份:
    2023
  • 资助金额:
    $ 400万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了