EAGER: Generating Motional Quantum States of an Optically Trapped Diamond Nanocrystal Containing Nitrogen Vacancy Centers

EAGER:生成含有氮空位中心的光学捕获金刚石纳米晶体的运动量子态

基本信息

  • 批准号:
    1827071
  • 负责人:
  • 金额:
    $ 9.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The motions of objects in everyday life appear to follow simple rules (Newton's laws). For example, a hockey puck gliding across ice tends to keep moving in a straight line at constant speed unless a force acts on it. It is implicit in Newton's laws that you can always measure everything about the puck's motion, such as its position and its speed, without affecting the motion. It seems that the same should be true of any object, whether it is huge like the planet earth or tiny like an atom. However, this is not how nature works; very small objects, such as an atom or an electron, seem to obey a different set of rules, called quantum mechanics. Quantum mechanics predicts that strange things can happen, for example, an atom can have properties of being in two places at the same time, until its position is actually measured. As strange as those rules are, they make the electronics in computers and cell phones work, so we know they are accurate. Why don't hockey pucks have this strange quantum behavior? Interaction with other objects tends to hide the effects of quantum mechanics for objects much larger than atoms. The research team supported by this project will levitate a tiny diamond crystal in a chamber with almost no air remaining to minimize its interaction with other objects and stretch the size limits over which quantum mechanics does apply. The results of these experiments will improve our understanding of quantum mechanics, which is the foundation on which almost all our modern technology is based. This program ultimately seeks to produce "cat states" in a mechanical system, where an object is in a quantum superposition of two different positions. This is a challenge which has puzzled physicists since the famous thought experiments of Schrodinger, 80 years ago. Researchers supported by this program will demonstrate that a trapped diamond nanocrystal containing nitrogen-vacancy (NV) defect centers is a nearly ideal platform for creating such motional quantum states. In particular, they will work towards demonstrating four critical capabilities of this system. First, the diamond nanocrystal must be trapped in vacuum with an ultra-high quality factor (Q). Second, it must be possible to manipulate and read out the spin state of the NV centers. Third, the NV center spin states must couple to the state of the mechanical motion. Last, the mechanical motion must be cooled to near the ground state to initialize the system to a known configuration. The experiments begin by loading a diamond nanocrystal into the trap. Next, the spin state of NV centers in the trapped nanodiamond will be read optically and manipulated with a microwave drive. Finally, the mechanical motion is coupled to the NV center spins through externally-imposed magnetic field gradients. The combination of the ultra high Q of the mechanical motion and quantum control of the NV centers makes trapped, NV-containing nanodiamonds a unique system for generating motional quantum states. The development of this system could be of great value in exploring the fundamental limits of quantum mechanics and the properties of novel motional quantum states.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
日常生活中物体的运动似乎遵循简单的规则(牛顿定律)。例如,一个冰球在冰面上滑行时,如果没有外力作用,它会保持匀速直线运动。牛顿定律中隐含着这样一个事实:你可以在不影响冰球运动的情况下,测量冰球运动的所有信息,比如它的位置和速度。似乎任何物体都应该如此,无论它是像地球一样巨大还是像原子一样微小。然而,这不是自然界的工作方式;非常小的物体,如原子或电子,似乎遵循一套不同的规则,称为量子力学。量子力学预言,奇怪的事情可能会发生,例如,一个原子可以同时在两个地方,直到它的位置被实际测量。尽管这些规则很奇怪,但它们使电脑和手机中的电子设备工作,所以我们知道它们是准确的。为什么冰球没有这种奇怪的量子行为?与其他物体的相互作用往往会掩盖量子力学对比原子大得多的物体的影响。该项目支持的研究团队将在一个几乎没有空气的腔室中悬浮一个微小的金刚石晶体,以最大限度地减少其与其他物体的相互作用,并扩展量子力学适用的尺寸限制。这些实验的结果将提高我们对量子力学的理解,这是我们几乎所有现代技术的基础。这个计划最终寻求在一个机械系统中产生“猫态”,在这个系统中,一个物体处于两个不同位置的量子叠加态。自从80年前薛定谔著名的思想实验以来,这个挑战一直困扰着物理学家。由该计划支持的研究人员将证明,包含氮空位(NV)缺陷中心的被困金刚石晶体是创建这种运动量子态的近乎理想的平台。特别是,他们将努力展示该系统的四个关键能力。首先,金刚石微粉必须被捕获在具有超高品质因数(Q)的真空中。其次,它必须能够操纵和读出NV中心的自旋状态。第三,NV中心自旋态必须耦合到机械运动的状态。最后,机械运动必须被冷却到接近基态,以将系统初始化为已知的配置。实验的开始是将一颗钻石放入陷阱中。接下来,被捕获的纳米金刚石中NV中心的自旋状态将被光学读取并用微波驱动器操纵。最后,机械运动通过外部施加的磁场梯度耦合到NV中心自旋。机械运动的超高Q和NV中心的量子控制的组合使得捕获的含NV的纳米金刚石成为用于产生运动量子态的独特系统。该系统的开发在探索量子力学的基本极限和新颖的运动量子态的性质方面具有重要价值。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparison of magneto-gravitational and optical trapping for levitated optomechanics
  • DOI:
    10.1117/12.2531665
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Lewandowski;W. Babbitt;B. D’Urso
  • 通讯作者:
    C. Lewandowski;W. Babbitt;B. D’Urso
Precision optomechanics with a particle in a magneto-gravitational trap
  • DOI:
    10.1117/12.2515721
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walter M. Klahold;C. Lewandowski;P. Nachman;B. Slezak;B. D’Urso
  • 通讯作者:
    Walter M. Klahold;C. Lewandowski;P. Nachman;B. Slezak;B. D’Urso
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian D'Urso其他文献

Feedback cooling of a one-electron oscillator.
单电子振荡器的反馈冷却。
  • DOI:
    10.1103/physrevlett.90.043001
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Brian D'Urso;Brian Odom;G. Gabrielse
  • 通讯作者:
    G. Gabrielse

Brian D'Urso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian D'Urso', 18)}}的其他基金

Collaborative Research: Measuring G with a Magneto-Gravitational Trap
合作研究:用磁引力阱测量 G
  • 批准号:
    2011783
  • 财政年份:
    2020
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
REU Site: Quantum and Materials Physics
REU 网站:量子与材料物理
  • 批准号:
    1950282
  • 财政年份:
    2020
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
Pulsed Quantum Optomechanics with a Particle in a Magneto-Gravitational Trap
磁引力陷阱中粒子的脉冲量子光力学
  • 批准号:
    1912083
  • 财政年份:
    2019
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Continuing Grant
Instructional Laboratory for Experimental Training (INLET)
实验训练教学实验室 (INLET)
  • 批准号:
    1834463
  • 财政年份:
    2017
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Measuring G with a Microsphere in a Magneto-Gravitational Trap
合作研究:用磁引力阱中的微球测量 G
  • 批准号:
    1757005
  • 财政年份:
    2017
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Measuring G with a Microsphere in a Magneto-Gravitational Trap
合作研究:用磁引力阱中的微球测量 G
  • 批准号:
    1707789
  • 财政年份:
    2017
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
EAGER: Generating Motional Quantum States of an Optically Trapped Diamond Nanocrystal Containing Nitrogen Vacancy Centers
EAGER:生成含有氮空位中心的光学捕获金刚石纳米晶体的运动量子态
  • 批准号:
    1540879
  • 财政年份:
    2015
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
Instructional Laboratory for Experimental Training (INLET)
实验训练教学实验室 (INLET)
  • 批准号:
    1504874
  • 财政年份:
    2015
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant

相似海外基金

A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
  • 批准号:
    24K02286
  • 财政年份:
    2024
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: CAS: A light-based, energy-generating, carbon removal process
SBIR 第一阶段:CAS:基于光的能量产生碳去除过程
  • 批准号:
    2335596
  • 财政年份:
    2024
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
  • 批准号:
    BB/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Research Grant
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
  • 批准号:
    IM240100202
  • 财政年份:
    2024
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Mid-Career Industry Fellowships
3D Diffusion Models for Generating and Understanding 3D Scenes
用于生成和理解 3D 场景的 3D 扩散模型
  • 批准号:
    DP240101926
  • 财政年份:
    2024
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Discovery Projects
Identification a novel bone-generating macrophage subset and their molecular mechanisms.
鉴定一种新型的骨生成巨噬细胞亚群及其分子机制。
  • 批准号:
    24K19848
  • 财政年份:
    2024
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331583
  • 财政年份:
    2023
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Standard Grant
Development of a method for modifying peptides using cation-generating sulfoxides
开发使用产生阳离子的亚砜修饰肽的方法
  • 批准号:
    23H02609
  • 财政年份:
    2023
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
  • 批准号:
    23K04201
  • 财政年份:
    2023
  • 资助金额:
    $ 9.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了