Pulsed Quantum Optomechanics with a Particle in a Magneto-Gravitational Trap
磁引力陷阱中粒子的脉冲量子光力学
基本信息
- 批准号:1912083
- 负责人:
- 金额:$ 42.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project will experimentally investigate a fundamental question in physics: What is the largest size scale explained by quantum mechanics, the theory of physics that has led to computers, smartphones, light-emitting diodes (LEDs), and lasers? While quantum mechanics correctly predicts the behavior of small objects such as electrons and atoms, the application of quantum mechanics to larger objects has puzzled physicists for over 80 years. Most famously, applying the often strange predictions of quantum mechanics to the macroscopic objects we experience in daily life led the famous physicist Erwin Schroedinger to conclude that a cat could be placed in a state in which it is both dead and alive at the same time! In the present project, the investigators will test the predictions of quantum mechanics on a small sphere, approximately 1 micrometer across, which is 10,000 times larger than an atom but still 100 times smaller than the diameter of a human hair. To isolate the sphere, it will be levitated in a magnetic field in a sealed chamber with nearly all the air removed; less than one millionth of one millionth of atmospheric pressure will remain. Since nothing is allowed to directly touch the sphere, it will be pushed around using laser light. Ultimately, the behavior of the sphere under these conditions will increase our understanding of the limits of quantum mechanics, which makes much of modern life possible.This goal of this project is to test the predictions of quantum mechanics on a mesoscopic object, a micrometer-scale sphere levitated in a magneto-gravitational trap. The project builds on the unique properties of a microsphere in a magneto-gravitational trap, including static trapping fields, stable trapping, extreme isolation from the environment in ultra-high vacuum, high efficiency of optical detection of the particle position, and the precise control of the motion of the particle which is possible with feedback cooling via radiation pressure. While the motion of the particle is classical over long time scales (seconds), new sub-millisecond pulsed measurements with greatly increased optical intensity are predicted to reveal quantum-limited behavior when the radiation pressure shot noise due to the illumination dominates the motional state decoherence. In particular, the pulsed measurements are expected to enable position detection near the standard quantum limit. With continued improvements in isolation, the system will enable tests of gravitational collapse models such as continuous spontaneous localization and serve as a platform for future exploration of mesoscopic quantum mechanics and ultra-sensitive force measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过实验研究物理学中的一个基本问题:量子力学解释的最大尺寸尺度是什么,量子力学是导致计算机,智能手机,发光二极管(LED)和激光器的物理学理论?虽然量子力学正确地预测了电子和原子等小物体的行为,但量子力学在更大物体上的应用已经困扰了物理学家80多年。最著名的是,将量子力学经常奇怪的预测应用于我们日常生活中所经历的宏观物体,导致著名物理学家欧文·薛定谔得出结论,猫可以被置于一种既死又活的状态!在目前的项目中,研究人员将在一个直径约1微米的小球上测试量子力学的预测,这个小球比原子大10,000倍,但仍然比人类头发的直径小100倍。为了隔离球体,它将在一个密封室中的磁场中悬浮,几乎所有的空气都被移除;不到百万分之一的大气压将保留下来。由于不允许任何东西直接接触球体,因此将使用激光推动球体。最终,球体在这些条件下的行为将增加我们对量子力学极限的理解,这使得现代生活成为可能。这个项目的目标是在介观物体上测试量子力学的预测,一个悬浮在磁引力陷阱中的微米级球体。该项目基于磁引力阱中微球的独特性质,包括静态捕获场,稳定的捕获,超高真空中与环境的极端隔离,粒子位置的高效光学检测,以及通过辐射压力反馈冷却可能实现的粒子运动的精确控制。虽然粒子的运动是经典的长时间尺度(秒),新的亚毫秒脉冲测量大大增加的光强度预测揭示量子限制的行为时,由于照明的辐射压力散粒噪声占主导地位的运动状态退相干。特别是,脉冲测量预期能够实现接近标准量子极限的位置检测。随着隔离的不断改进,该系统将能够测试引力坍缩模型,如连续自发局域化,并作为未来探索介观量子力学和超灵敏力测量的平台。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparison of magneto-gravitational and optical trapping for levitated optomechanics
- DOI:10.1117/12.2531665
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:C. Lewandowski;W. Babbitt;B. D’Urso
- 通讯作者:C. Lewandowski;W. Babbitt;B. D’Urso
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian D'Urso其他文献
Feedback cooling of a one-electron oscillator.
单电子振荡器的反馈冷却。
- DOI:
10.1103/physrevlett.90.043001 - 发表时间:
2003 - 期刊:
- 影响因子:8.6
- 作者:
Brian D'Urso;Brian Odom;G. Gabrielse - 通讯作者:
G. Gabrielse
Brian D'Urso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian D'Urso', 18)}}的其他基金
Collaborative Research: Measuring G with a Magneto-Gravitational Trap
合作研究:用磁引力阱测量 G
- 批准号:
2011783 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
REU Site: Quantum and Materials Physics
REU 网站:量子与材料物理
- 批准号:
1950282 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Instructional Laboratory for Experimental Training (INLET)
实验训练教学实验室 (INLET)
- 批准号:
1834463 - 财政年份:2017
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Collaborative Research: Measuring G with a Microsphere in a Magneto-Gravitational Trap
合作研究:用磁引力阱中的微球测量 G
- 批准号:
1757005 - 财政年份:2017
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
EAGER: Generating Motional Quantum States of an Optically Trapped Diamond Nanocrystal Containing Nitrogen Vacancy Centers
EAGER:生成含有氮空位中心的光学捕获金刚石纳米晶体的运动量子态
- 批准号:
1827071 - 财政年份:2017
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Collaborative Research: Measuring G with a Microsphere in a Magneto-Gravitational Trap
合作研究:用磁引力阱中的微球测量 G
- 批准号:
1707789 - 财政年份:2017
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
EAGER: Generating Motional Quantum States of an Optically Trapped Diamond Nanocrystal Containing Nitrogen Vacancy Centers
EAGER:生成含有氮空位中心的光学捕获金刚石纳米晶体的运动量子态
- 批准号:
1540879 - 财政年份:2015
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Instructional Laboratory for Experimental Training (INLET)
实验训练教学实验室 (INLET)
- 批准号:
1504874 - 财政年份:2015
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
- 批准号:
2308969 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
CAREER: Torsional Quantum Optomechanics
职业:扭转量子光力学
- 批准号:
2239735 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Continuing Grant
PhD Studentship in Experimental Levitated Quantum Optomechanics
实验悬浮量子光力学博士生
- 批准号:
2869813 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Studentship
Optomechanics in the microwave regime for quantum technologies and fundamental sciences
量子技术和基础科学微波领域的光力学
- 批准号:
DGECR-2022-00128 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Launch Supplement
Optomechanics in the microwave regime for quantum technologies and fundamental sciences
量子技术和基础科学微波领域的光力学
- 批准号:
RGPIN-2022-04435 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual
Levitated Quantum Optomechanics with Trapped, Rotating Microparticles
具有捕获的旋转微粒的悬浮量子光力学
- 批准号:
DP220102303 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Projects
Quantum spin-optomechanics
量子自旋光力学
- 批准号:
RGPIN-2022-03551 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual
Quantum Optomechanics at the Standard Quantum Limit
标准量子极限下的量子光力学
- 批准号:
2110455 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
- 批准号:
RGPIN-2016-04535 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




