NRT-HDR: Intersecting computational and data science to address grand challenges in plant biology

NRT-HDR:交叉计算和数据科学以应对植物生物学的巨大挑战

基本信息

  • 批准号:
    1828149
  • 负责人:
  • 金额:
    $ 300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Plants are indispensable for life on earth, providing food, energy, and oxygen, as well as the basis for many man-made products. A better understanding of plant science will lead to more secure plant resources, which is even more important given the rapidly increasing global population. Genomics research has significantly advanced our understanding about how plants function, with the application of genomics yielding datasets that could revolutionize plant science and lead to safe, reliable, and sustainable production of food and biofuels. To achieve these outcomes, there is a critical need for scientists with both an understanding of plant biology and computational skills. This National Science Foundation Research Traineeship (NRT) award to Michigan State University will address this demand by training doctoral students who can employ advanced computational and data science approaches to address grand challenges in plant biology. The project anticipates training approximately seventy (70) PhD students, including thirty-eight (38) funded trainees from plant biology and computational data science programs. Trainees will engage in research and coursework that emphasize tackling "grand challenge" questions in plant biology by leveraging computational approaches. Training will go beyond the traditional genomics and bioinformatics approaches in plant biology to include the advanced training in computation and modeling required to handle increasingly heterogeneous, multi-scale data from the molecular to ecosystem levels. This type of training will allow students to tackle complex questions such as investigating genotype-phenotype relationships across the Plant Tree of Life or machine learning for high-dimensional plant data. In addition, the traineeship features professional development opportunities, outreach activities, and industry/governmental internships that serve to broaden trainees' career options while also improving their ability to communicate with a wide range of audiences. Upon completion of the training program, trainees will have a core understanding of plant and computational sciences, excel in interdisciplinary biological and computational research, and possess effective communication, leadership, management, teaching, and mentoring skills. Trainees will be co-advised by experts in plant science and computational/data science. To accomplish the training goals, trainees will participate in a program consisting of: (1) curricular and research activities that will create a cohort of trainees with dual expertise in computational sciences and plant biology, (2) a biweekly forum to encourage scientific interactions, (3) a trainee-led annual symposium that engages a wider scientific audience and builds organizational and leadership skills, (4) internship opportunities in industry and government agencies, (5) professional development activities tailored to individual career goals, including entrepreneurship, and (6) public engagement through outreach activities, further bolstering the ability of trainees to communicate with a wide range of audiences. The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物是地球上生命不可或缺的,提供食物、能量和氧气,也是许多人造产品的基础。更好地了解植物科学将导致更安全的植物资源,这在全球人口迅速增长的情况下尤为重要。 基因组学研究大大提高了我们对植物功能的理解,基因组学的应用产生的数据集可以彻底改变植物科学,并导致安全,可靠和可持续的粮食和生物燃料生产。为了实现这些成果,迫切需要既了解植物生物学又掌握计算技能的科学家。密歇根州立大学获得的国家科学基金会研究培训(NRT)将通过培训博士生来满足这一需求,这些博士生可以采用先进的计算和数据科学方法来应对植物生物学的重大挑战。该项目预计将培训大约七十(70)名博士生,其中包括三十八(38)名来自植物生物学和计算数据科学项目的受资助学员。学员将参与研究和课程,强调利用计算方法解决植物生物学中的“重大挑战”问题。培训将超越植物生物学中传统的基因组学和生物信息学方法,包括处理从分子到生态系统层面日益异质化的多尺度数据所需的计算和建模方面的高级培训。 这种类型的培训将使学生能够解决复杂的问题,例如调查整个植物生命树的基因型-表型关系或高维植物数据的机器学习。 此外,培训的特点是专业发展机会、外联活动和行业/政府实习,这有助于扩大学员的职业选择,同时提高他们与广泛受众沟通的能力。完成培训计划后,学员将对植物和计算科学有核心理解,擅长跨学科生物和计算研究,并拥有有效的沟通,领导,管理,教学和指导技能。学员将由植物科学和计算/数据科学专家共同提供咨询。为了实现培训目标,学员将参加一个包括以下内容的计划:(1)课程和研究活动,将培养一批具有计算科学和植物生物学双重专业知识的学员,(2)双周论坛,鼓励科学互动,(3)由学员领导的年度研讨会,吸引更广泛的科学受众,培养组织和领导技能,(4)在行业和政府机构的实习机会,(5)针对个人职业目标的专业发展活动,包括创业精神,以及(6)通过外联活动进行公众参与,进一步加强学员与广泛受众沟通的能力。NSF研究培训(NRT)计划旨在鼓励为STEM研究生教育培训开发和实施大胆的,新的潜在变革模式。该计划致力于通过全面的培训模式,在高优先级的跨学科研究领域对STEM研究生进行有效培训,这些模式具有创新性,以证据为基础,并与不断变化的劳动力和研究需求保持一致。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combination of meta‐analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean
  • DOI:
    10.1002/tpg2.20328
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Izquierdo;J. Kelly;S. Beebe;K. Cichy
  • 通讯作者:
    P. Izquierdo;J. Kelly;S. Beebe;K. Cichy
Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from T-DNA collections
  • DOI:
    10.1016/j.plantsci.2019.110335
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Jiang, Nan;Lee, Yun Sun;Grotewold, Erich
  • 通讯作者:
    Grotewold, Erich
Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds
  • DOI:
    10.1016/j.plantsci.2019.110364
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Gomez-Cano, Lina;Gomez-Cano, Fabio;Gray, John
  • 通讯作者:
    Gray, John
Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity
  • DOI:
    10.1016/j.molp.2022.01.003
  • 发表时间:
    2022-03-07
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Hoopes, Genevieve;Meng, Xiaoxi;Finkers, Richard
  • 通讯作者:
    Finkers, Richard
Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling anomalies.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shin-Han Shiu其他文献

Machine learning reveals genes impacting oxidative stress resistance across yeasts
机器学习揭示了影响酵母氧化应激抗性的基因
  • DOI:
    10.1038/s41467-025-60189-3
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Katarina Aranguiz;Linda C. Horianopoulos;Logan Elkin;Kenia Segura Abá;Drew Jordahl;Katherine A. Overmyer;Russell L. Wrobel;Joshua J. Coon;Shin-Han Shiu;Antonis Rokas;Chris Todd Hittinger
  • 通讯作者:
    Chris Todd Hittinger
Selection-enriched genomic loci (SEGL) reveals genetic loci for environmental adaptation and photosynthetic productivity in emChlamydomonas reinhardtii/em
选择富集基因组位点(SEGL)揭示了莱茵衣藻环境适应和光合生产力的遗传位点
  • DOI:
    10.1016/j.algal.2022.102709
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Ben F. Lucker;Joshua A. Temple;Nicolas L. Panchy;Urs F. Benning;Jacob D. Bibik;Peter G. Neofotis;Joseph C. Weissman;Ivan R. Baxter;Shin-Han Shiu;David M. Kramer
  • 通讯作者:
    David M. Kramer
CLAVATA signalling shapes barley inflorescence by controlling activity and determinacy of shoot meristem and rachilla
CLAVATA 信号通过控制茎尖分生组织和小穗轴的活性和确定性来塑造大麦花序。
  • DOI:
    10.1038/s41467-025-59330-z
  • 发表时间:
    2025-04-26
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Isaia Vardanega;Jan Eric Maika;Edgar Demesa-Arevalo;Tianyu Lan;Gwendolyn K. Kirschner;Jafargholi Imani;Ivan F. Acosta;Katarzyna Makowska;Götz Hensel;Thilanka Ranaweera;Shin-Han Shiu;Thorsten Schnurbusch;Maria von Korff;Rüdiger Simon
  • 通讯作者:
    Rüdiger Simon
PTEMD: a novel method for identifyingpolymorphic transposable elements via scanning of high-throughput short reads
PTEMD:一种通过扫描高通量短读段来识别多态性转座元件的新方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Stephen Obol Opiyo;Ning Jiang;Shin-Han Shiu;Guo-Liang Wang
  • 通讯作者:
    Guo-Liang Wang
Computational prediction of plant metabolic pathways
  • DOI:
    10.1016/j.pbi.2021.102171
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Peipei Wang;Ally M. Schumacher;Shin-Han Shiu
  • 通讯作者:
    Shin-Han Shiu

Shin-Han Shiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shin-Han Shiu', 18)}}的其他基金

RESEARCH-PGR: Combining machine learning and experimental analysis to define trichome and root-specific gene regulatory networks in cultivated tomato and related Solanaceae species
RESEARCH-PGR:结合机器学习和实验分析来定义栽培番茄和相关茄科物种中的毛状体和根特异性基因调控网络
  • 批准号:
    2218206
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: Assessing the connections between genetic interactions, environments, and phenotypes in Arabidopsis thaliana
合作研究:评估拟南芥遗传相互作用、环境和表型之间的联系
  • 批准号:
    2210431
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
TRTech-PGR: Connecting sequences to functions within and between species through computational modeling and experimental studies
TRTech-PGR:通过计算模型和实验研究将序列与物种内部和物种之间的功能连接起来
  • 批准号:
    2107215
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: Fitness effects of loss-of-function mutations in duplicate genes
合作研究:重复基因功能丧失突变的适应性影响
  • 批准号:
    1655386
  • 财政年份:
    2017
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Computational and Experimental Studies of Plastid Functional Networks
质体功能网络的计算和实验研究
  • 批准号:
    1119778
  • 财政年份:
    2011
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
Experimental Characterization of Novel Coding Small ORFs in the Arabidopsis thaliana Genome
拟南芥基因组中新编码小 ORF 的实验表征
  • 批准号:
    0749634
  • 财政年份:
    2008
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant

相似国自然基金

新型复合物gemcitabine-miR-15a靶向抑制PRMT5-RPA-HDR信号通路促进胰腺癌化疗增敏的分子机制
  • 批准号:
    82373128
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于神经网络压缩和可分级策略的HDR视频编码方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
CASAAV-HDR靶向基因组整合CaMKⅡ抑制肽AIP治疗心力衰竭的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向LDR立体显示的HDR立体视频版权保护研究
  • 批准号:
    61971247
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
CRISPR/Cas9介导HDR-SSA两步法猪IGF2基因“无缝编辑”新技术研究
  • 批准号:
    31702099
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
单曝光HDR成像关键技术研究
  • 批准号:
    61401072
  • 批准年份:
    2014
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: A Genome Wide HDR Enhancement Screen in Maize
EAGER:玉米全基因组 HDR 增强屏幕
  • 批准号:
    2409037
  • 财政年份:
    2024
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NRT-HDR: Integrative Training in Data Science-Enabled Sensing of the Environment for Climate Adaptation (DataSENSE)
NRT-HDR:数据科学支持的气候适应环境感知综合培训 (DataSENSE)
  • 批准号:
    2244403
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
Evaluation of genetic variants affecting platelet function with CRISPR HDR in human megakaryocytes
利用 CRISPR HDR 评估影响人类巨核细胞血小板功能的遗传变异
  • 批准号:
    10737494
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
NRT-FW-HTF-HDR: PLATFORMS FOR EXCHANGE AND ALLOCATION OF RESOURCES (PEAR)
NRT-FW-HTF-HDR:资源交换和分配平台(PEAR)
  • 批准号:
    2244340
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NRT-HDR: Interdisciplinary Studies in Entomology, Computer Science and Technology NETwork (INSECT NET)
NRT-HDR:昆虫学、计算机科学与技术网络(INSECT NET)的跨学科研究
  • 批准号:
    2243979
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NRT-HDR: Transdisciplinary Research and Education for Air and Water Resources Solutions in Coastal Communities
NRT-HDR:沿海社区空气和水资源解决方案的跨学科研究和教育
  • 批准号:
    2244523
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
  • 批准号:
    2321574
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Cas9を用いたゲノム編集におけるHDR効率向上に重要な要素の探索
使用 Cas9 寻找提高基因组编辑中 HDR 效率的重要因素
  • 批准号:
    23K13844
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NRT-HDR: Advancing Materials Frontiers with Creativity and Data Science
NRT-HDR:通过创造力和数据科学推进材料前沿
  • 批准号:
    2243526
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NRT-HDR: Computational Research for Equity in the Legal System" (CRELS)
NRT-HDR:法律体系公平的计算研究”(CRELS)
  • 批准号:
    2243822
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了