Collaborative Research: Assessing the connections between genetic interactions, environments, and phenotypes in Arabidopsis thaliana
合作研究:评估拟南芥遗传相互作用、环境和表型之间的联系
基本信息
- 批准号:2210431
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Organismal complexity is due in large part to genes working not in isolation but with each other. Knowledge of such interactions will facilitate improving plant productivity and resilience to increasingly extreme conditions. However, studying the impacts of gene interactions on plant traits is challenging for two reasons. First, there can be millions of possible interactions to sieve through. Second, both nature (i.e., genes and gene interactions) and nurture (i.e., the environment) are important. Even when a gene interaction is identified as being important, its relevance is frequently known only for one environment. This project will address these challenges by investigating the question of how nature and nurture jointly impact plant traits. Specifically, interactions between hundreds of pairs of genes in the model plant Arabidopsis will be examined by measuring survival traits under different temperatures. Artificial intelligence-based approaches will be used to measure traits and to build models that predict gene interactions under different environments. These prediction models will also incorporate existing knowledge of interactions among similar genes from non-plant species. The predictions will be tested experimentally and will provide insight into how nature and nurture jointly influence plant survival and fitness. Such insight will facilitate better predictions of gene functions in both model and crop plants and provide candidate genes for engineering productive and resilient plants. Findings from this project will serve as examples illustrating to the scientific community and the public the benefits of integrating experimental and computational approaches. Advances in genetics and genomics have led to an unprecedented understanding of how genotypes connect with phenotypes and the roles of genetic interactions and the environment in controlling phenotype. However, the environmental dependency of gene × gene interactions is frequently not considered, particularly in multicellular species. The goal of this project is to better understand the connection between genotypes and phenotype by assessing the impact of environmental perturbation on genetic interactions and by identifying the genetic components underlying this plasticity in the model plant Arabidopsis thaliana using protein kinase genes as examples. This will be accomplished through phenotyping experiments coupled with computational modeling. First, models predicting genetic interactions specific to an environmental context will be generated through multi-omics data integration and the use of existing genetic interaction data from Arabidopsis and other model species (e.g., yeast and worm) and new experimental data generated from 150–200 pairs of single and double kinase mutants grown in 3–5 different environmental contexts (i.e., temperature regimes), yielding multiple trait values, which will be used to calculate quantitative measures of genetic interactions between gene pairs and the environment. Next, model predictions will be validated using the experimental data, and the results will be used to further refine the models. The refined models will be dissected using model interpretation methods to reveal the molecular features important for specifying context-specific genetic interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有机体的复杂性在很大程度上是由于基因不是孤立地工作,而是相互作用的。了解这种相互作用将有助于提高植物生产力和对日益极端条件的适应能力。然而,研究基因相互作用对植物性状的影响具有挑战性,原因有两个。首先,可能有数百万种可能的交互需要筛选。第二,两种性质(即,基因和基因相互作用)和养育(即,环境)很重要。即使一个基因的相互作用被认为是重要的,它的相关性往往是已知的只有一个环境。这个项目将通过调查自然和养育如何共同影响植物性状的问题来解决这些挑战。具体而言,将通过测量不同温度下的存活性状来检查模式植物拟南芥中数百对基因之间的相互作用。基于人工智能的方法将用于测量性状,并建立预测不同环境下基因相互作用的模型。这些预测模型还将结合现有的知识,从非植物物种的类似基因之间的相互作用。这些预测将通过实验进行测试,并将深入了解自然和养育如何共同影响植物的生存和健康。这样的洞察力将有助于更好地预测模型和作物植物中的基因功能,并为工程生产和弹性植物提供候选基因。该项目的研究结果将作为例子,向科学界和公众说明实验和计算方法相结合的好处。遗传学和基因组学的进步使人们对基因型与表型的联系以及遗传相互作用和环境在控制表型中的作用有了前所未有的了解。然而,基因×基因相互作用的环境依赖性往往没有考虑,特别是在多细胞物种。该项目的目标是更好地了解基因型和表型之间的联系,通过评估环境干扰对遗传相互作用的影响,并通过识别基因组件的可塑性,在模式植物拟南芥蛋白激酶基因为例。这将通过表型实验结合计算建模来实现。首先,预测特定于环境背景的遗传相互作用的模型将通过多组学数据整合和使用来自拟南芥和其他模式物种的现有遗传相互作用数据(例如,酵母和蠕虫)和由在3-5种不同环境条件下生长的150-200对单激酶和双激酶突变体产生的新实验数据(即,温度制度),产生多个性状值,这将被用来计算基因对和环境之间的遗传相互作用的定量措施。接下来,将使用实验数据验证模型预测,并将结果用于进一步完善模型。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolutionary analysis of the LORELEI gene family in plants reveals regulatory subfunctionalization
植物 LORELEI 基因家族的进化分析揭示了调控亚功能化
- DOI:10.1093/plphys/kiac444
- 发表时间:2022
- 期刊:
- 影响因子:7.4
- 作者:Noble, Jennifer A.;Bielski, Nicholas V.;Liu, Ming-Che James;DeFalco, Thomas A.;Stegmann, Martin;Nelson, Andrew D. L.;McNamara, Kara;Sullivan, Brooke;Dinh, Khanhlinh K.;Khuu, Nicholas
- 通讯作者:Khuu, Nicholas
Challenges and opportunities to build quantitative self-confidence in biologists
- DOI:10.1093/biosci/biad015
- 发表时间:2023-04-29
- 期刊:
- 影响因子:10.1
- 作者:Cuddington,Kim;Abbott,Karen C.;White,Easton R.
- 通讯作者:White,Easton R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shin-Han Shiu其他文献
Machine learning reveals genes impacting oxidative stress resistance across yeasts
机器学习揭示了影响酵母氧化应激抗性的基因
- DOI:
10.1038/s41467-025-60189-3 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:15.700
- 作者:
Katarina Aranguiz;Linda C. Horianopoulos;Logan Elkin;Kenia Segura Abá;Drew Jordahl;Katherine A. Overmyer;Russell L. Wrobel;Joshua J. Coon;Shin-Han Shiu;Antonis Rokas;Chris Todd Hittinger - 通讯作者:
Chris Todd Hittinger
CLAVATA signalling shapes barley inflorescence by controlling activity and determinacy of shoot meristem and rachilla
CLAVATA 信号通过控制茎尖分生组织和小穗轴的活性和确定性来塑造大麦花序。
- DOI:
10.1038/s41467-025-59330-z - 发表时间:
2025-04-26 - 期刊:
- 影响因子:15.700
- 作者:
Isaia Vardanega;Jan Eric Maika;Edgar Demesa-Arevalo;Tianyu Lan;Gwendolyn K. Kirschner;Jafargholi Imani;Ivan F. Acosta;Katarzyna Makowska;Götz Hensel;Thilanka Ranaweera;Shin-Han Shiu;Thorsten Schnurbusch;Maria von Korff;Rüdiger Simon - 通讯作者:
Rüdiger Simon
Selection-enriched genomic loci (SEGL) reveals genetic loci for environmental adaptation and photosynthetic productivity in emChlamydomonas reinhardtii/em
选择富集基因组位点(SEGL)揭示了莱茵衣藻环境适应和光合生产力的遗传位点
- DOI:
10.1016/j.algal.2022.102709 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:4.500
- 作者:
Ben F. Lucker;Joshua A. Temple;Nicolas L. Panchy;Urs F. Benning;Jacob D. Bibik;Peter G. Neofotis;Joseph C. Weissman;Ivan R. Baxter;Shin-Han Shiu;David M. Kramer - 通讯作者:
David M. Kramer
PTEMD: a novel method for identifyingpolymorphic transposable elements via scanning of high-throughput short reads
PTEMD:一种通过扫描高通量短读段来识别多态性转座元件的新方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:4.1
- 作者:
Stephen Obol Opiyo;Ning Jiang;Shin-Han Shiu;Guo-Liang Wang - 通讯作者:
Guo-Liang Wang
Computational prediction of plant metabolic pathways
- DOI:
10.1016/j.pbi.2021.102171 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:7.500
- 作者:
Peipei Wang;Ally M. Schumacher;Shin-Han Shiu - 通讯作者:
Shin-Han Shiu
Shin-Han Shiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shin-Han Shiu', 18)}}的其他基金
RESEARCH-PGR: Combining machine learning and experimental analysis to define trichome and root-specific gene regulatory networks in cultivated tomato and related Solanaceae species
RESEARCH-PGR:结合机器学习和实验分析来定义栽培番茄和相关茄科物种中的毛状体和根特异性基因调控网络
- 批准号:
2218206 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
TRTech-PGR: Connecting sequences to functions within and between species through computational modeling and experimental studies
TRTech-PGR:通过计算模型和实验研究将序列与物种内部和物种之间的功能连接起来
- 批准号:
2107215 - 财政年份:2021
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
NRT-HDR: Intersecting computational and data science to address grand challenges in plant biology
NRT-HDR:交叉计算和数据科学以应对植物生物学的巨大挑战
- 批准号:
1828149 - 财政年份:2018
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Fitness effects of loss-of-function mutations in duplicate genes
合作研究:重复基因功能丧失突变的适应性影响
- 批准号:
1655386 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Computational and Experimental Studies of Plastid Functional Networks
质体功能网络的计算和实验研究
- 批准号:
1119778 - 财政年份:2011
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Experimental Characterization of Novel Coding Small ORFs in the Arabidopsis thaliana Genome
拟南芥基因组中新编码小 ORF 的实验表征
- 批准号:
0749634 - 财政年份:2008
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
合作研究:评估加州海流生态系统中火体入侵和持续存在的原因
- 批准号:
2329559 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
RUI: Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
RUI:合作研究:评估加州当前生态系统中火体入侵和持续存在的原因
- 批准号:
2329561 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
合作研究:评估加州海流生态系统中火体入侵和持续存在的原因
- 批准号:
2329560 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: DASS: Assessing the Relationship Between Privacy Regulations and Software Development to Improve Rulemaking and Compliance
合作研究:DASS:评估隐私法规与软件开发之间的关系以改进规则制定和合规性
- 批准号:
2317185 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales
IntBIO 合作研究:评估大陆尺度固氮共生的驱动因素
- 批准号:
2316267 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
RII Track-4: NSF: Building Linkages: Assessing the Importance of Terrestrial Climate in Deglacial Ice Sheet Dynamics through Collaborative Research Capacity Building
RII Track-4:NSF:建立联系:通过合作研究能力建设评估陆地气候在冰消冰盖动力学中的重要性
- 批准号:
2229696 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Assessing the role of polyphosphate production and cycling in marine ecosystem functioning.
合作研究:评估聚磷酸盐生产和循环在海洋生态系统功能中的作用。
- 批准号:
2245248 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Assessing Impacts of a Four-Day Workweek
协作研究:评估四天工作周的影响
- 批准号:
2241840 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant