MRI: Acquisition of a High Performance Big Data Analysis Platform

MRI:收购高性能大数据分析平台

基本信息

项目摘要

This project from the University of Louisville Research Foundation will support acquisition of a Big Data Analysis Platform (BDAP) with high performance data storage, networking, and processing capabilities. The platform will support research in multimedia, biomedicine, metagenomics, and health data analysis. In addition, the platform will allow general research on efficient management and analysis of big data. Moreover, strengthening scientific research across the university, the researchers will engage with K-12 students and teachers.The project will advance the state-of-the-art in big data management and analysis by enabling five research thrusts that will use the BDAP equipment purchased by this award. First, BDAP will provide improvement over existing big data management techniques by introducing self-optimizing and energy efficient big data platforms through dynamic data placement, retrieval, and reorganization algorithms, as well as enabling efficient big data analysis through novel heterogeneous and multi-source data clustering algorithms. Second, BDAP will allow experimentation with novel algorithms guided by deep neural networks to analyze big multimedia data. Third, BDAP will enable experimentation with new paradigms for integrating big biomedical data from multiple sources including image, genomic, quantitative, biological, and observational data. Fourth, BDAP will enable testing of techniques to generate, store, analyze and integrate large microbiome, health and socioeconomic data sets to determine the causal relationship between specific microbial profiles and human health via bioinformatics and data mining approaches. Finally, the project will contribute to the development of new statistical methods for analyzing high dimensional data for epigenetic, pharmacogenomics, and genome association studies. This in-house instrument enables energy consumption measurements and permanent storage for sensitive data sets of petabyte-range. While advancing engineering knowledge, the instrumentation supports computational, statistical, and bioengineering research, that applies engineering principles to several problems in biology and medicine.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
路易斯维尔大学研究基金会的该项目将支持收购具有高性能数据存储、网络和处理能力的大数据分析平台(BDAP)。 该平台将支持多媒体、生物医学、宏基因组学和健康数据分析方面的研究。 此外,该平台还将允许对大数据的有效管理和分析进行一般研究。 此外,为了加强整个大学的科学研究,研究人员将与 K-12 学生和教师合作。该项目将通过使用该奖项购买的 BDAP 设备的五个研究重点来推进大数据管理和分析的最先进水平。首先,BDAP将通过动态数据放置、检索和重组算法引入自我优化和节能的大数据平台,并通过新颖的异构和多源数据聚类算法实现高效的大数据分析,从而改进现有的大数据管理技术。其次,BDAP 将允许试验由深度神经网络引导的新颖算法来分析多媒体大数据。第三,BDAP 将启用新范例的实验,以整合来自多个来源的生物医学大数据,包括图像、基因组、定量、生物和观察数据。第四,BDAP 将能够测试生成、存储、分析和整合大型微生物组、健康和社会经济数据集的技术,通过生物信息学和数据挖掘方法确定特定微生物特征与人类健康之间的因果关系。 最后,该项目将有助于开发新的统计方法,用于分析表观遗传学、药物基因组学和基因组关联研究的高维数据。 这款内部仪器可实现能耗测量并永久存储 PB 级敏感数据集。 在推进工程知识的同时,该仪器支持计算、统计和生物工程研究,将工程原理应用于生物学和医学中的多个问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monte Carlo Based Server Consolidation for Energy Efficient Cloud Data Centers
Ultra-Low Latency SSDs' Impact on Overall Energy Efficiency
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Harris;Nihat Altiparmak
  • 通讯作者:
    B. Harris;Nihat Altiparmak
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nihat Altiparmak其他文献

Generalized Optimal Response Time Retrieval of Replicated Data from Storage Arrays
从存储阵列中检索复制数据的广义最佳响应时间
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nihat Altiparmak;A. Tosun
  • 通讯作者:
    A. Tosun
Replication Based QoS Framework for Flash Arrays
基于复制的闪存阵列 QoS 框架
Dynamic Data Layout Optimization for High Performance Parallel I/O
高性能并行 I/O 的动态数据布局优化
Low cost indoor location management system using infrared leds and Wii Remote Controller
使用红外 LED 和 Wii 遥控器的低成本室内定位管理系统
Energy Implications of IO Interface Design Choices
IO 接口设计选择的能源影响

Nihat Altiparmak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nihat Altiparmak', 18)}}的其他基金

CC* Data Storage: Cardinal Academic Research Data Storage (CARDS)
CC* 数据存储:Cardinal 学术研究数据存储 (CARDS)
  • 批准号:
    2322248
  • 财政年份:
    2023
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
CRII: CSR: Online Analysis of Disk I/O for Automatic Storage System Optimization
CRII:CSR:用于自动存储系统优化的磁盘 I/O 在线分析
  • 批准号:
    1657296
  • 财政年份:
    2017
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant

相似海外基金

MRI: Track 1 Acquisition of a High-Performance Computing System at New Mexico Tech
MRI:新墨西哥理工学院高性能计算系统的第一轨道采购
  • 批准号:
    2320162
  • 财政年份:
    2024
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Continuing Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
  • 批准号:
    2320292
  • 财政年份:
    2023
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a High-Performance X-Ray Photoelectron Spectrometer for Research and Training
设备: MRI:轨道 1 采购高性能 X 射线光电子能谱仪用于研究和培训
  • 批准号:
    2320116
  • 财政年份:
    2023
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
  • 批准号:
    2320244
  • 财政年份:
    2023
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
  • 批准号:
    2320846
  • 财政年份:
    2023
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a high-performance computing resource to enhance research and undergraduate education at the College of Staten Island
MRI:收购高性能计算资源以加强史坦顿岛学院的研究和本科教育
  • 批准号:
    2215760
  • 财政年份:
    2022
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
  • 批准号:
    2216084
  • 财政年份:
    2022
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High-Performance Computing Cluster for Research in Engineering, Science, and Technology
MRI:收购高性能计算集群用于工程、科学和技术研究
  • 批准号:
    2216335
  • 财政年份:
    2022
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
  • 批准号:
    2215388
  • 财政年份:
    2022
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了