EAGER: A Cloud-assisted Framework for Improving Pedestrian Safety in Urban Communities using Crowd-sourced Mobile and Wearable Device Data
EAGER:使用众包移动和可穿戴设备数据改善城市社区行人安全的云辅助框架
基本信息
- 批准号:1829066
- 负责人:
- 金额:$ 12.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-19 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pedestrian safety continues to be a significant concern in urban communities. Several recent reports indicate that injuries and fatalities in pedestrian-related accidents are steadily rising and that pedestrian distraction is one of the leading causes in such accidents. Existing systems and techniques for improving pedestrian safety, which primarily operate on users' smartphones and mobile devices in a stand-alone fashion, have several design drawbacks and performance and usability concerns that have precluded their successful adoption and usage. The goal of this project is to improve pedestrian safety by designing accurate, efficient and usable tools and techniques, which can be easily adopted by urban users. In order to accomplish this goal, this project plans to pursue a focused research agenda involving novel technologies and several exploratory and untested ideas. As part of the proposed pedestrian safety framework, accurate and energy-efficient on-device distraction detection techniques will be developed by employing multi-sensor and heterogeneous data available from upcoming mobile and wearable devices. In this direction, supervised and semi-supervised learning will be used to design efficient activity classification and distraction prediction techniques which will be empirically evaluated using proof-of-concept implementations. Unlike existing stand-alone approaches, the proposed framework employs a connected-community approach to accurately capture the impact of both a pedestrian's own actions, as well as the actions of others, on his/her safety. This involves the design and implementation of a privacy-preserving and cloud-assisted data-analytics engine to capture, analyze and notify pedestrians of impending hazardous situations from the crowd-sourced distraction data obtained from participating users. Finally, a comprehensive performance and usability evaluation will be conducted by deploying a large-scale testbed involving participants from Wichita State University's (WSU) campus community. The project outcomes, including the planned testbed, will have a significant impact on improving pedestrian safety within the WSU campus community. If successful, similar trials at an urban or city-wide scale can also be envisioned. In addition to improving pedestrian safety, this project will educate users and participants on the impact of technology on pedestrian safety and its role in improving the same. Project outcomes and results will be disseminated by means of peer-reviewed publications, white papers and open-source applications. Applications and anonymous data collected from the planned testbed will be appropriately disseminated to facilitate additional research and advances in the area of pedestrian safety technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
行人安全仍然是城市社区的一个重要问题。最近的几份报告表明,与交通事故有关的伤亡人数稳步上升,行人分心是这类事故的主要原因之一。主要以独立的方式在用户的智能电话和移动的设备上操作的用于提高行人安全性的现有系统和技术具有若干设计缺陷以及性能和可用性问题,这些设计缺陷和性能以及可用性问题已经阻碍了它们的成功采用和使用。该项目的目标是通过设计准确、有效和可用的工具和技术来改善行人安全,这些工具和技术可以很容易地被城市用户采用。为了实现这一目标,该项目计划追求一个集中的研究议程,涉及新技术和一些探索性和未经测试的想法。作为拟议行人安全框架的一部分,将通过采用即将推出的移动的和可穿戴设备提供的多传感器和异构数据,开发准确且节能的设备上分心检测技术。在这个方向上,监督和半监督学习将用于设计有效的活动分类和分心预测技术,这些技术将使用概念验证实现进行经验评估。与现有的独立方法不同,拟议的框架采用了一种连接社区的方法,以准确地捕捉行人自己的行动以及其他人的行动对他/她的安全的影响。这涉及到隐私保护和云辅助数据分析引擎的设计和实施,以捕获,分析和通知行人即将发生的危险情况,从参与用户获得的众包分心数据。最后,一个全面的性能和可用性评估将进行部署一个大规模的测试平台,涉及参与者从威奇托州立大学(WSU)的校园社区。 该项目的成果,包括计划中的试验台,将对改善WSU校园社区内的行人安全产生重大影响。如果成功,还可以设想在城市或全市范围内进行类似的试验。除了改善行人安全外,该项目还将教育用户和参与者了解技术对行人安全的影响及其在改善行人安全方面的作用。项目成果和结果将通过同行审查的出版物、白色文件和开放源码应用程序传播。从计划的试验台收集的应用程序和匿名数据将被适当地传播,以促进行人安全技术领域的进一步研究和进步。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards a Practical Pedestrian Distraction Detection Framework using Wearables
- DOI:10.1109/percomw.2018.8480238
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Nisha Vinayaga-Sureshkanth;Anindya Maiti;Murtuza Jadliwala;Kirsten Crager;Jibo He;Heena Rathore
- 通讯作者:Nisha Vinayaga-Sureshkanth;Anindya Maiti;Murtuza Jadliwala;Kirsten Crager;Jibo He;Heena Rathore
A Practical Framework for Preventing Distracted Pedestrian-Related Incidents Using Wrist Wearables
- DOI:10.1109/access.2018.2884669
- 发表时间:2018-11
- 期刊:
- 影响因子:3.9
- 作者:Nisha Vinayaga-Sureshkanth;Anindya Maiti;Murtuza Jadliwala;Kirsten Crager;Jibo He;Heena Rathore
- 通讯作者:Nisha Vinayaga-Sureshkanth;Anindya Maiti;Murtuza Jadliwala;Kirsten Crager;Jibo He;Heena Rathore
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murtuza Jadliwala其他文献
On Algorand Transaction Fees: Challenges and Mechanism Design
Algorand 交易费用:挑战与机制设计
- DOI:
10.1109/icc45855.2022.9838795 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Abbasi;M. Manshaei;M. Rahman;Kemal Akkaya;Murtuza Jadliwala - 通讯作者:
Murtuza Jadliwala
Impact of Urban Micromobility Technology on Pedestrian and Rider Safety: A Field Study Using Pedestrian Crowd-Sensing
城市微交通技术对行人和骑手安全的影响:利用行人群体感应进行现场研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Anindya Maiti;Nisha Vinayaga;Murtuza Jadliwala;Raveen Wijewickrama - 通讯作者:
Raveen Wijewickrama
deWristified: handwriting inference using wrist-based motion sensors revisited
deWristified:重新审视使用基于手腕的运动传感器进行手写推理
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Raveen Wijewickrama;Anindya Maiti;Murtuza Jadliwala - 通讯作者:
Murtuza Jadliwala
"Once Upon a Place": Compute Your Meeting Location Privately
“从前有一个地方”:私下计算您的聚会地点
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Igor Bilogrevic;Murtuza Jadliwala;Kübra Kalkan;J. Hubaux;I. Aad - 通讯作者:
I. Aad
AgSec :
农业安全部:
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Navid Alamatsaz;Arash Boustani;Murtuza Jadliwala;Vinod Namboodiri - 通讯作者:
Vinod Namboodiri
Murtuza Jadliwala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murtuza Jadliwala', 18)}}的其他基金
Collaborative Research: CISE-MSI: DP: CNS: Multi-Modal User-Centric Mobility Scooter Driving Safety Assessment System
合作研究:CISE-MSI:DP:CNS:多模式以用户为中心的代步车驾驶安全评估系统
- 批准号:
2318672 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: ScooterLab - A Programmable and Participatory Sensing Testbed using Micromobility Vehicles
合作研究:CCRI:新:ScooterLab - 使用微型移动车辆的可编程和参与式传感测试台
- 批准号:
2234516 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
- 批准号:
2219772 - 财政年份:2022
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
CCRI: Planning: ScooterLab: Development of a Programmable and Participatory e-Scooter Testbed to Enable CISE-focused Micromobility Research
CCRI:规划:ScooterLab:开发可编程和参与式电动滑板车测试平台,以实现以 CISE 为重点的微移动研究
- 批准号:
2016717 - 财政年份:2020
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
CAREER: A Holistic Context-based Approach for Security and Privacy in the Era of Ubiquitous Sensing and Computing
职业:无处不在的传感和计算时代的基于上下文的整体安全和隐私方法
- 批准号:
1943351 - 财政年份:2020
- 资助金额:
$ 12.96万 - 项目类别:
Continuing Grant
OAC Core: Small: Devising Data-driven Methodologies by Employing Large-scale Empirical Data to Fingerprint, Attribute, Remediate and Analyze Internet-scale IoT Maliciousness
OAC 核心:小型:通过使用大规模经验数据来指纹识别、归因、修复和分析互联网规模的物联网恶意行为,设计数据驱动的方法
- 批准号:
1953051 - 财政年份:2019
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
CSR: Small: Surviving Cybersecurity and Privacy Threats in Wearable Mobile Cyber-Physical Systems
企业社会责任:小:应对可穿戴移动网络物理系统中的网络安全和隐私威胁
- 批准号:
1828071 - 财政年份:2018
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
EAGER: A Cloud-assisted Framework for Improving Pedestrian Safety in Urban Communities using Crowd-sourced Mobile and Wearable Device Data
EAGER:使用众包移动和可穿戴设备数据改善城市社区行人安全的云辅助框架
- 批准号:
1637290 - 财政年份:2016
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
CSR: Small: Surviving Cybersecurity and Privacy Threats in Wearable Mobile Cyber-Physical Systems
企业社会责任:小:应对可穿戴移动网络物理系统中的网络安全和隐私威胁
- 批准号:
1523960 - 财政年份:2015
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
相似海外基金
SaTC: CORE: Small: Hardware-assisted Self-repairing in Decentralized Cloud Storage against Malicious Attacks
SaTC:CORE:小型:去中心化云存储中的硬件辅助自我修复抵御恶意攻击
- 批准号:
2225424 - 财政年份:2022
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Cloud Assisted Two-Tier Wireless Networks
云辅助两层无线网络
- 批准号:
RGPIN-2021-04298 - 财政年份:2022
- 资助金额:
$ 12.96万 - 项目类别:
Discovery Grants Program - Individual
Cloud Assisted Two-Tier Wireless Networks
云辅助两层无线网络
- 批准号:
RGPIN-2021-04298 - 财政年份:2021
- 资助金额:
$ 12.96万 - 项目类别:
Discovery Grants Program - Individual
Lidar cloud data assisted digital twin development for the built environment
激光雷达云数据辅助建筑环境的数字孪生开发
- 批准号:
564587-2021 - 财政年份:2021
- 资助金额:
$ 12.96万 - 项目类别:
University Undergraduate Student Research Awards
Encoder-assisted graphics rendering for cloud gaming
用于云游戏的编码器辅助图形渲染
- 批准号:
524103-2018 - 财政年份:2018
- 资助金额:
$ 12.96万 - 项目类别:
Engage Grants Program
Cloud-assisted solution for crowdsourced live streaming systems
众包直播系统的云辅助解决方案
- 批准号:
513575-2017 - 财政年份:2017
- 资助金额:
$ 12.96万 - 项目类别:
Engage Grants Program
EAGER: A Cloud-assisted Framework for Improving Pedestrian Safety in Urban Communities using Crowd-sourced Mobile and Wearable Device Data
EAGER:使用众包移动和可穿戴设备数据改善城市社区行人安全的云辅助框架
- 批准号:
1637290 - 财政年份:2016
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
PFI:BIC: RouteMe2 -A Cloud-Integrated Sensor Infrastructure for Assisted Public Transportation Services
PFI:BIC:RouteMe2 - 用于辅助公共交通服务的云集成传感器基础设施
- 批准号:
1632158 - 财政年份:2016
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
A cloud-assisted crowdsourcing machine-to-machine networking platform for vehicular applications
用于车辆应用的云辅助众包机器对机器网络平台
- 批准号:
447493-2013 - 财政年份:2015
- 资助金额:
$ 12.96万 - 项目类别:
Strategic Projects - Group
CSR: Small: Collaborative Research: CAM: A Cloud-Assisted mHealth Monitoring System
CSR:小型:协作研究:CAM:云辅助移动健康监测系统
- 批准号:
1422665 - 财政年份:2014
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant