NRI: FND: Robotic Human Enhancement Enabled through Wearable Hip Exoskeletons Capable of Community Ambulation

NRI:FND:通过可进行社区行走的可穿戴髋关节外骨骼实现机器人人类增强

基本信息

  • 批准号:
    1830215
  • 负责人:
  • 金额:
    $ 70.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The increased metabolic and biomechanical demands of ambulation limit community mobility in persons with lower limb disability due to neurological damage or advanced age. Robotic exoskeletons have the potential to assist these individuals to increase community mobility to improve quality of life. Current technology does not support dynamic movements, such as transitioning between different gaits and supporting a wide variety of walking speeds. This project proposes to meet this challenge by exploring an innovative myoelectric controller that brings together information across multiple muscles to assist the exoskeleton in a range of tasks for mobility. Of interest is how to extract information about the human user's intent, such as what speed the user wants to walk at or if they want to take a step up a stair. Recognizing intent will allow the device to give appropriate assistance over a wide range of activities. For this research project, the investigators will use a new type of robotic hip exoskeleton to augment the human hip during tasks such as walking at different speed, ramps and stairs. This project seeks to advance the state of the science in man-machine exoskeleton interfaces through new types of control techniques. This will help the team's long-term research goal of creating robotic assistive devices that benefit individuals with serious lower limb disabilities by improving mobility and, thus, overall independence. This NSF project will also include a significant outreach to the local Atlanta community. Local project partners will bring underserved minority students in the Atlanta area to Georgia Tech to participate in this educational program. These high school students will interact with the human assistive robotics in the lab and design, build, and program their own assistive robots through hands on education. This project will facilitate the training of an interdisciplinary group of students including graduate and undergraduate biomedical, electrical, and mechanical engineers, GT graduate students training to be clinical practitioners in prosthetics and orthotics, and physical therapists in training in Emory's DPT program. This interdisciplinary group of students will work together to fully integrate all aspects of the project and facilitate learning.This research project will advance the knowledge of myoelectric (EMG) control for enabling humans to have dynamic movement assistance using lower limb robotic exoskeletons. Existing technologies of exoskeleton systems have limited high-level understanding of user intent, thus precluding adaptation to a proper range of daily tasks of living. Sensing modalities used in such systems do not provide sufficient information regarding key physiological parameters such as muscle activity. Conventional control algorithms relate a single modality of sensors to exoskeleton assistance and are thus incapable of fusing broader sets of varying sensor information. These technological gaps have impeded the translation of such systems beyond lab settings to clinical use where they can impact important health needs such as assistive rehabilitation. This proposal will address these gaps in assistive robotic technology by pursuing research organized in three key objectives: Objective 1) Determine the most effective strategy of providing exoskeleton hip assistance for reducing metabolic cost using a novel myoelectric controller. Objective 2) Compare the metabolic and biomechanical effects of a novel controller driven by myoelectric inputs vs a standard controller driven by kinematic inputs. Objective 3) Determine the contributions of high-level intent recognition using myoelectric information to improve control of a powered hip exoskeleton over simulated community terrain. Relatively simple mobility tasks like standing from a seated position or walking represent the primary outcome measures that determine independence in rehabilitation. Thus, the wearable exoskeleton system described in this grant proposal has the potential to make a measurable impact on enhancing the functional performance capabilities of individuals with lower limb deficits by increasing their quality of life, independence and well-being.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于神经损伤或高龄导致的下肢残疾患者,行走的代谢和生物力学需求的增加限制了社区活动能力。机器人外骨骼有可能帮助这些人增加社区流动性,提高生活质量。目前的技术不支持动态运动,例如在不同的步态之间转换和支持各种步行速度。该项目提出通过探索一种创新的肌电控制器来应对这一挑战,该控制器将多个肌肉的信息整合在一起,以帮助外骨骼完成一系列行动任务。人们感兴趣的是如何提取有关人类用户意图的信息,例如用户想要以什么速度行走,或者他们是否想要走上楼梯。识别意图将允许设备在广泛的活动中提供适当的帮助。在这个研究项目中,研究人员将使用一种新型的机器人髋关节外骨骼来增强人类髋关节在不同速度、斜坡和楼梯行走等任务中的功能。该项目旨在通过新型控制技术推动人机外骨骼界面的科学发展。这将有助于该团队的长期研究目标,即创造机器人辅助设备,通过提高移动性和整体独立性,使患有严重下肢残疾的个人受益。这个NSF项目也将包括一个重要的延伸到当地的亚特兰大社区。当地的项目合作伙伴将把亚特兰大地区服务不足的少数民族学生带到佐治亚理工学院参加这个教育项目。这些高中生将在实验室中与人类辅助机器人互动,并通过动手教育设计、建造和编程他们自己的辅助机器人。该项目将促进跨学科学生群体的培训,包括研究生和本科生生物医学,电气和机械工程师,GT研究生培训成为假肢和矫形的临床从业人员,以及Emory DPT项目培训的物理治疗师。这个跨学科的学生小组将共同努力,充分整合项目的各个方面,促进学习。该研究项目将推进肌电(EMG)控制的知识,使人类能够使用下肢机器人外骨骼进行动态运动辅助。现有的外骨骼系统技术对用户意图的理解程度有限,因此无法适应日常生活任务的适当范围。在这种系统中使用的传感模式不能提供关于关键生理参数(如肌肉活动)的足够信息。传统的控制算法将传感器的单一模式与外骨骼辅助联系起来,因此无法融合更广泛的不同传感器信息集。这些技术差距阻碍了这些系统从实验室环境向临床应用的转化,在临床应用中,它们可以影响辅助康复等重要的卫生需求。本提案将通过以下三个关键目标来解决辅助机器人技术的这些空白:目标1)确定使用新型肌电控制器提供外骨骼髋关节辅助以降低代谢成本的最有效策略。目的2)比较由肌电输入驱动的新型控制器与由运动输入驱动的标准控制器的代谢和生物力学效应。目的3)利用肌电信息确定高水平意图识别的贡献,以改善动力髋关节外骨骼在模拟社区地形上的控制。相对简单的活动任务,如从坐姿站立或行走是决定康复独立性的主要结果措施。因此,本拨款提案中描述的可穿戴外骨骼系统有可能通过提高下肢缺陷患者的生活质量、独立性和幸福感,对增强其功能表现能力产生可衡量的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-Time Walk Detection for Robotic Hip Exoskeleton Applications
  • DOI:
    10.1109/ismr48347.2022.9807510
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Man Cho;Inseung Kang;DongHo Park;Dean D. Molinaro;Aaron J. Young
  • 通讯作者:
    Hang Man Cho;Inseung Kang;DongHo Park;Dean D. Molinaro;Aaron J. Young
Design and Validation of a Cable-Driven Asymmetric Back Exosuit
  • DOI:
    10.1109/tro.2021.3112280
  • 发表时间:
    2021-10-04
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Li, Jared M.;Molinaro, Dean D.;Young, Aaron J.
  • 通讯作者:
    Young, Aaron J.
Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network
使用深度卷积神经网络进行地上运动期间基于可穿戴传感器的步长估计
Reduction of Trunk Extensor Muscle Activation using a Cable-Driven Asymmetric Back Exosuit
使用电缆驱动的不对称背部外装减少躯干伸肌激活
Subject-Independent, Biological Hip Moment Estimation During Multimodal Overground Ambulation Using Deep Learning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Young其他文献

An FPGA-Based Neuromorphic Processor with All-to-All Connectivity
具有全面连接性的基于 FPGA 的神经拟态处理器
Expanding Our Reach: Development of a Civilian Helicopter Air Ambulance K9 Response Program
  • DOI:
    10.1016/j.amj.2022.03.003
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lesley Osborn;George Tarver;Rodolfo Cabrera;Aaron Young;Kristin Uhlin;Jeff Chalkley;Michael Seely;David E. Meyer
  • 通讯作者:
    David E. Meyer
Modelling Large Heaped Fill Stockpiles Using FMS Data
使用 FMS 数据对大型堆积填充库存进行建模
  • DOI:
    10.3390/min11060636
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Aaron Young;W. P. Rogers
  • 通讯作者:
    W. P. Rogers
Zero-Shot Policy Transferability for the Control of a Scale Autonomous Vehicle
规模自动驾驶车辆控制的零样本策略可转移性
  • DOI:
    10.48550/arxiv.2309.09870
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harry Zhang;Stefan Caldararu;Sriram Ashokkumar;Ishaan Mahajan;Aaron Young;Alexis Ruiz;Huzaifa Unjhawala;Luning Bakke;D. Negrut
  • 通讯作者:
    D. Negrut
A Study on the Use of Simulation in Synthesizing Path-Following Control Policies for Autonomous Ground Robots
利用仿真综合自主地面机器人路径跟踪控制策略的研究
  • DOI:
    10.48550/arxiv.2403.18021
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harry Zhang;Stefan Caldararu;Aaron Young;Alexis Ruiz;Huzaifa Unjhawala;Ishaan Mahajan;Sriram Ashokkumar;Nevindu Batagoda;Zhenhao Zhou;Luning Bakke;D. Negrut
  • 通讯作者:
    D. Negrut

Aaron Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Young', 18)}}的其他基金

Collaborative Research: Towards Task-Agnostic and Device-Agnostic Ankle Exoskeleton Control for Mobility Enhancement
协作研究:实现与任务无关和与设备无关的踝外骨骼控制以增强灵活性
  • 批准号:
    2328051
  • 财政年份:
    2023
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
FRR: A new strategy for task-agnostic control of robotic exoskeletons by estimating underlying biological effort using deep learning
FRR:通过使用深度学习估计潜在的生物努力来对机器人外骨骼进行与任务无关的控制的新策略
  • 批准号:
    2233164
  • 财政年份:
    2023
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
SBIR Phase I: Biosensor Compatible Polymers for Use in a Commercial 3D Microdevice Printer
SBIR 第一阶段:用于商用 3D 微型设备打印机的生物传感器兼容聚合物
  • 批准号:
    0810763
  • 财政年份:
    2008
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
  • 批准号:
    2024409
  • 财政年份:
    2020
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
  • 批准号:
    2024435
  • 财政年份:
    2020
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: The Robotic Rehab Gym: Specialized co-robot trainers working with multiple human trainees for optimal learning outcomes
NRI:FND:机器人康复健身房:专业协作机器人培训师与多名人类受训者合作以获得最佳学习成果
  • 批准号:
    2024813
  • 财政年份:
    2020
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: Using Multi-Modal Data to Make Robotic Grasp Algorithms Aware of Human Preferences for Safe Collaborative Robot-Human Handover Interactions with Novel Objects
NRI:FND:使用多模态数据使机器人抓取算法了解人类偏好,以实现与新物体的安全协作机器人-人类切换交互
  • 批准号:
    2023998
  • 财政年份:
    2020
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
  • 批准号:
    2024878
  • 财政年份:
    2020
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
  • 批准号:
    1924723
  • 财政年份:
    2019
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: Creating Trust Between Groups of Humans and Robots Using a Novel Music Driven Robotic Emotion Generator
NRI:FND:使用新颖的音乐驱动机器人情感发生器在人类和机器人群体之间建立信任
  • 批准号:
    1925178
  • 财政年份:
    2019
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
  • 批准号:
    1949346
  • 财政年份:
    2019
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
  • 批准号:
    1924303
  • 财政年份:
    2019
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
NRI: FND: Towards Scalable and Self-Aware Robotic Perception
NRI:FND:迈向可扩展和自我意识的机器人感知
  • 批准号:
    1924937
  • 财政年份:
    2019
  • 资助金额:
    $ 70.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了