NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
基本信息
- 批准号:2024878
- 负责人:
- 金额:$ 74.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will enable robots to learn to perform tasks with human teammates from language and other human modalities, and then transfer the learned knowledge across heterogeneous platforms and tasks. This will ultimately allow human-robot teaming in domains where people use varied language and instructions to complete complex tasks. As robots become more capable and ubiquitous, they are increasingly moving into complex, human-centric environments such as workplaces and homes. Being able to deploy useful robots in settings where human specialists are stretched thin, such as assistive technology, elder care, and education, has the potential to have far-reaching impacts on human quality of life. Achieving this will require the development of robots that learn, from natural interaction, about an end user's goals and environment. This work is intended to make robots more accessible and usable for non-specialists. In order to verify success and involve the broader community, tasks will be drawn from and tested in conjunction with community Makerspaces, which are strongly linked with both education and community involvement. The award includes an education and outreach plan designed to increase participation by and retention of women and underrepresented minorities (URM) in robotics and computing, engaging with UMBC's large URM population and world-class programs in this space.This award addresses how collaborative learning and successful performance during human-robot interactions can be accomplished by learning from and acting on grounded language. To accomplish this, this project will revolve around learning structured representations of abstract knowledge with goal-directed task completion, grounded in a physical context. There are three high-level research thrusts. In the first, new perceptual models to learn an alignment among a robot's multiple, heterogeneous sensor and data streams will be developed. In the second, synchronous grounded language models will be developed to better capture both general linguistic and implicit contextual expectations that are needed for completing tasks. In the third, a deep reinforcement learning framework will be developed that can leverage the advances achieved by the first two thrusts, allowing the development of techniques for learning conceptual knowledge. Taken together, these advances will allow an agent to achieve domain adaptation, improve its behaviors in new environments, and transfer conceptual knowledge among robotic agents.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使机器人能够从语言和其他人类模式中学习与人类队友一起执行任务,然后在异构平台和任务之间传输所学到的知识。这最终将允许人类与机器人在人们使用不同语言和指令来完成复杂任务的领域进行合作。随着机器人变得越来越有能力和无处不在,它们越来越多地进入以人为中心的复杂环境,如工作场所和家庭。能够在人类专家捉襟见肘的环境中部署有用的机器人,例如辅助技术,老年人护理和教育,有可能对人类的生活质量产生深远的影响。实现这一目标将需要开发能够从自然交互中学习最终用户目标和环境的机器人。这项工作的目的是使机器人更容易为非专业人士使用。为了验证成功并让更广泛的社区参与,将从社区创客空间中提取任务并与社区创客空间一起进行测试,社区创客空间与教育和社区参与密切相关。该奖项包括一项教育和推广计划,旨在提高妇女和代表性不足的少数民族(URM)在机器人和计算领域的参与度和保留率,与UMBC庞大的URM人口和该领域的世界级项目合作。该奖项旨在探讨如何通过学习和运用基础语言来实现人机交互过程中的协作学习和成功表现。为了实现这一目标,该项目将围绕学习抽象知识的结构化表示与目标导向的任务完成,在物理环境中接地。有三个高层次的研究重点。首先,将开发新的感知模型来学习机器人的多个异构传感器和数据流之间的对齐。在第二,同步接地语言模型将被开发,以更好地捕捉完成任务所需的一般语言和隐式上下文的期望。在第三个方面,将开发一个深度强化学习框架,该框架可以利用前两个方面取得的进展,从而开发学习概念知识的技术。这些进步将使智能体能够实现领域适应,改善其在新环境中的行为,并在机器人智能体之间传递概念知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring Equality in Machine Learning Security Defenses: A Case Study in Speech Recognition
- DOI:10.1145/3605764.3623911
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Luke E. Richards;Edward Raff;Cynthia Matuszek
- 通讯作者:Luke E. Richards;Edward Raff;Cynthia Matuszek
POQue: Asking Participant-specific Outcome Questions for a Deeper Understanding of Complex Events
- DOI:10.48550/arxiv.2212.02629
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Sai Vallurupalli;Sayontan Ghosh;K. Erk;Niranjan Balasubramanian;Francis Ferraro
- 通讯作者:Sai Vallurupalli;Sayontan Ghosh;K. Erk;Niranjan Balasubramanian;Francis Ferraro
Jointly Identifying and Fixing Inconsistent Readings from Information Extraction Systems
联合识别和修复信息提取系统的不一致读数
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Padia, Ankur;Ferraro, Francis;Finin, Tim
- 通讯作者:Finin, Tim
Lessons From A Small-Scale Robot Joining Experiment in VR
小型机器人参与 VR 实验的经验教训
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Higgins, Padraig;Barron, Ryan;Engel, Don;Matuszek, Cynthia
- 通讯作者:Matuszek, Cynthia
Bridging the Gap: Using Deep Acoustic Representations to Learn Grounded Language from Percepts and Raw Speech
- DOI:10.1609/aaai.v36i10.21335
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Gaoussou Youssouf Kebe;Luke E. Richards;Edward Raff;Francis Ferraro;Cynthia Matuszek
- 通讯作者:Gaoussou Youssouf Kebe;Luke E. Richards;Edward Raff;Francis Ferraro;Cynthia Matuszek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia Matuszek其他文献
Talking to Robots: Learning to Ground Human Language in Perception and Execution
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Cynthia Matuszek - 通讯作者:
Cynthia Matuszek
Photogrammetry and VR for Comparing 2D and Immersive Linguistic Data Collection (Student Abstract)
用于比较 2D 和沉浸式语言数据收集的摄影测量和 VR(学生摘要)
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jacob Rubinstein;Cynthia Matuszek;Don Engel - 通讯作者:
Don Engel
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.3
- 作者:
M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu - 通讯作者:
Zhou Yu
Automated Population of Cyc: Extracting Information about Named-entities from the Web
Cyc 的自动填充:从 Web 中提取有关命名实体的信息
- DOI:
10.13016/m2ns0m20t - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Purvesh Shah;David Schneider;Cynthia Matuszek;Robert C. Kahlert;Bjørn Aldag;David Baxter;J. Cabral;M. Witbrock;Jon Curtis - 通讯作者:
Jon Curtis
Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams - 通讯作者:
Tom Williams
Cynthia Matuszek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia Matuszek', 18)}}的其他基金
NSF 2024 NRI/FRR PI Meeting; Baltimore, Maryland; 28-30 April 2024
NSF 2024 NRI/FRR PI 会议;
- 批准号:
2414547 - 财政年份:2024
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
CAREER: Robots, Speech, and Learning in Inclusive Human Spaces
职业:包容性人类空间中的机器人、语音和学习
- 批准号:
2145642 - 财政年份:2022
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
EAGER: Learning Language in Simulation for Real Robot Interaction
EAGER:在模拟中学习语言以实现真实的机器人交互
- 批准号:
1940931 - 财政年份:2019
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
RI: Small: Concept Formation in Partially Observable Domains
RI:小:部分可观察领域中的概念形成
- 批准号:
1813223 - 财政年份:2018
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
CRII: RI: Joint Models of Language and Context for Robotic Language Acquisition
CRII:RI:机器人语言习得的语言和语境联合模型
- 批准号:
1657469 - 财政年份:2017
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
- 批准号:
1637937 - 财政年份:2016
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 74.87万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024670 - 财政年份:2021
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 74.87万 - 项目类别:
Standard Grant














{{item.name}}会员




