NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
基本信息
- 批准号:1830331
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wildfires destroy millions of hectares of forest, sensitive ecological systems, and human infrastructure. A critical aspect of mitigating wildfire-related damages is early fire detection, well before initiating fires grow to disastrous proportions. Current practices are based on expensive assets, such as satellites, watchtowers, and remote-piloted aircraft, that require constant human supervision, limiting their use to high-risk or high-value areas. This project aims to take advantage of the hyperconvergence of computation, storage, sensing, and communication in small unmanned aerial vehicles (UAVs) to realize large-scale mapping of environmental factors such as temperature, vegetation, pressure, and chemical concentration that contribute to fire initiation. UAV teams that recharge autonomously and communicate intermittently among each other and with static sensors is a compelling research objective that will aid firefighters with continuous real-time surveillance and early detection of ensuing fires.This proposal offers three fundamental innovations to address the scientific challenges associated with autonomous, collaborative environmental monitoring. First, a new Satisfiability Modulo Optimal Control framework is proposed to handle mixed continuous flight dynamics and discrete constraints and ensure collision avoidance, persistent communication, and autonomous recharging for UAV navigation. Second, a distributed systems architecture using new uncertainty-weighted models will be developed to enable cooperative mapping across a heterogeneous team of UAVs and static sensors and avoid bandwidth-intensive data streaming. Lastly, a new Bayesian learning and inference approach is proposed to generate multi-modal (e.g., thermal, semantic, geometric, chemical) maps of real-time environmental conditions with adaptive accuracy and uncertainty quantification. This project with its focus on multi-robot teams benefits, e.g., conservation management and search-and-rescue operations. Both applications demand robot coordination, cooperation, and autonomy, including multi-modal mapping, collaborative inference over heterogeneous networks, and multi-objective navigation with safety, communication, and energy constraints.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
野火摧毁了数百万公顷的森林、敏感的生态系统和人类基础设施。减轻与野火相关的损害的一个关键方面是在引发火灾发展到灾难性的程度之前及早发现火灾。目前的做法是基于昂贵的资产,如卫星、瞭望台和遥控飞机,这些资产需要持续的人工监督,将其使用限制在高风险或高价值地区。该项目旨在利用小型无人机(UAV)计算、存储、传感和通信的超聚合功能,实现对引发火灾的温度、植被、压力和化学浓度等环境因素的大规模测绘。无人机团队自主充电,彼此之间断断续续地通信,并使用静态传感器,这是一个引人注目的研究目标,将帮助消防员连续实时监视和早期发现后续火灾。这项提议提供了三项基本创新,以应对与自主、协作的环境监测相关的科学挑战。首先,提出了一种新的可满足性模最优控制框架,以处理混合连续飞行动力学和离散约束,并确保无人机导航中的碰撞避免、持续通信和自主充电。其次,将开发使用新的不确定性加权模型的分布式系统架构,以实现跨无人机和静态传感器的异类团队的协作映射,并避免带宽密集型数据流。最后,提出了一种新的贝叶斯学习和推理方法,以生成具有自适应精度和不确定性量化的实时环境条件的多模式(例如,热、语义、几何、化学)地图。该项目的重点是多机器人团队,因此可带来更多好处,例如养护管理和搜救行动。这两个应用都需要机器人的协调、合作和自主性,包括多模式映射、异类网络上的协作推理以及具有安全、通信和能源约束的多目标导航。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RESPIRE: Robust Sensor Placement Optimization in Probabilistic Environments
- DOI:10.1109/sensors47125.2020.9278821
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Onat Güngör;T. Rosing;Baris Aksanli
- 通讯作者:Onat Güngör;T. Rosing;Baris Aksanli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baris Aksanli其他文献
Consolidating Compression and Revisiting Expansion: an Alternative Amplification Rule for Wide Dynamic Range Compression
巩固压缩并重新审视扩展:宽动态范围压缩的替代放大规则
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alice Sokolova;Baris Aksanli;F. Harris;H. Garudadri - 通讯作者:
H. Garudadri
PIONEER: Highly Efficient and Accurate Hyperdimensional Computing using Learned Projection
PIONEER:使用学习投影进行高效、准确的超维计算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Fatemeh Asgarinejad;Justin Morris;T. Rosing;Baris Aksanli - 通讯作者:
Baris Aksanli
Context-aware and user-centric residential energy management
环境感知和以用户为中心的住宅能源管理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Baris Aksanli;J. Venkatesh;Christine S. Chan;A. S. Akyurek;Tajana Simunic - 通讯作者:
Tajana Simunic
Building an Intelligent and Efficient Smart Space to Detect Human Behavior in Common Areas
构建智能高效的智慧空间,检测公共区域的人类行为
- DOI:
10.1109/isncc.2018.8530988 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Shelke;Jacob Harbour;Baris Aksanli - 通讯作者:
Baris Aksanli
The case for ambient sensing for human activity detection
用于人类活动检测的环境传感案例
- DOI:
10.1145/3277593.3277628 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Neha Belapurkar;S. Shelke;Baris Aksanli - 通讯作者:
Baris Aksanli
Baris Aksanli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baris Aksanli', 18)}}的其他基金
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
- 批准号:
2003277 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001119 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001120 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001216 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
- 批准号:
1924723 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
- 批准号:
1949346 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
- 批准号:
1924303 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Optimal Design of Robust Compliant Actuators for Ubiquitous Co-Robots
NRI:FND:COLLAB:针对无处不在的协作机器人的鲁棒合规执行器的优化设计
- 批准号:
1953908 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Hierarchical Safe, and Distributed Feedback Control of Multiagent Legged Robots for Cooperative Locomotion and Manipulation
NRI:FND:COLLAB:用于协作运动和操纵的多智能腿机器人的分层安全分布式反馈控制
- 批准号:
1924617 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Hierarchical Safe, and Distributed Feedback Control of Multiagent Legged Robots for Cooperative Locomotion and Manipulation
NRI:FND:COLLAB:用于协作运动和操纵的多智能腿机器人的分层安全分布式反馈控制
- 批准号:
1924526 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Intuitive, Wearable Haptic Devices for Communication with Ubiquitous Robots
NRI:FND:COLLAB:用于与无处不在的机器人通信的直观、可穿戴触觉设备
- 批准号:
1830146 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant