Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
基本信息
- 批准号:2003277
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Internet of Things (IoT) generates large amounts of data that machine learning algorithms today process in the cloud. The heterogeneity of the data types and devices, along with limited computing and communication capabilities of IoT devices, poses a significant challenge to real-time training and learning with classical machine learning algorithms. This project instead proposes to use Hyperdimensional (HD) computing for distributed machine learning. HD computing is a brain-inspired machine learning paradigm that transforms data into knowledge at very low cost, while being extremely robust to errors. When completed, this project has the potential to change the way machine learning is done today – instead of depending on the cloud, IoT systems will be able to make quality decisions on the spot, in real time, regardless of connectivity, with long battery lifetime. This will be made possible by designing: i) novel HD encoding schemes to represent various data in IoT applications including numerical feature vectors, time-series data, and images, ii) a novel distributed learning framework for IoT networks by incorporating active learning to considerably reduce communication overhead and learning costs, and iii) a reliable learning solution based on the error-tolerant characteristic of HD computing. The ideas developed in this project will be tested on both UCSD and SDSU using a fully instrumented testbed for human activity recognition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网(IoT)会产生大量数据,如今机器学习算法会在云端处理这些数据。数据类型和设备的异质性,以及物联网设备有限的计算和通信能力,对使用经典机器学习算法进行实时训练和学习构成了重大挑战。该项目建议使用超高维(HD)计算进行分布式机器学习。高清计算是一种以大脑为灵感的机器学习范式,它以极低的成本将数据转化为知识,同时对错误具有极强的鲁棒性。完成后,该项目有可能改变当今机器学习的方式,而不是依赖于云,物联网系统将能够在现场实时做出高质量的决策,无论连接情况如何,电池寿命都很长。这将通过设计:i)新颖的高清编码方案来表示物联网应用中的各种数据,包括数字特征向量,时间序列数据和图像,ii)通过结合主动学习来显着降低通信开销和学习成本的物联网网络的新型分布式学习框架,以及iii)基于高清计算容错特性的可靠学习解决方案。在这个项目中开发的想法将在UCSD和SDSU进行测试,使用一个完全仪器化的人类活动识别测试平台。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-label HD Classification in 3D Flash
- DOI:10.1109/vlsi-soc46417.2020.9344070
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Justin Morris;Yilun Hao;Saransh Gupta;R. Ramkumar;Jeffrey Yu;M. Imani;Baris Aksanli;Tajana Simunic
- 通讯作者:Justin Morris;Yilun Hao;Saransh Gupta;R. Ramkumar;Jeffrey Yu;M. Imani;Baris Aksanli;Tajana Simunic
HD2FPGA: Automated Framework for Accelerating Hyperdimensional Computing on FPGAs
HD2FPGA:加速 FPGA 上超维计算的自动化框架
- DOI:10.1109/isqed57927.2023.10129332
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Tinaqi;Salamat, Sahand;Khaleghi, Behnam;Morris, Justin;Aksanli, Baris;Rosing, Tajana Simunic
- 通讯作者:Rosing, Tajana Simunic
AdaptBit-HD: Adaptive Model Bitwidth for Hyperdimensional Computing
AdaptBit-HD:超维计算的自适应模型位宽
- DOI:10.1109/iccd53106.2021.00026
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Morris, J.
- 通讯作者:Morris, J.
Adversarial-HD: Hyperdimensional Computing Adversarial Attack Design for Secure Industrial Internet of Things
- DOI:10.1145/3576914.3587484
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Onat Gungor;T. Rosing;Baris Aksanli
- 通讯作者:Onat Gungor;T. Rosing;Baris Aksanli
HyDREA: Towards More Robust and Efficient Machine Learning Systems with Hyperdimensional Computing
HyDREA:通过超维计算实现更强大、更高效的机器学习系统
- DOI:10.23919/date51398.2021.9474218
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Morris, J.
- 通讯作者:Morris, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baris Aksanli其他文献
Consolidating Compression and Revisiting Expansion: an Alternative Amplification Rule for Wide Dynamic Range Compression
巩固压缩并重新审视扩展:宽动态范围压缩的替代放大规则
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alice Sokolova;Baris Aksanli;F. Harris;H. Garudadri - 通讯作者:
H. Garudadri
PIONEER: Highly Efficient and Accurate Hyperdimensional Computing using Learned Projection
PIONEER:使用学习投影进行高效、准确的超维计算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Fatemeh Asgarinejad;Justin Morris;T. Rosing;Baris Aksanli - 通讯作者:
Baris Aksanli
Context-aware and user-centric residential energy management
环境感知和以用户为中心的住宅能源管理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Baris Aksanli;J. Venkatesh;Christine S. Chan;A. S. Akyurek;Tajana Simunic - 通讯作者:
Tajana Simunic
Building an Intelligent and Efficient Smart Space to Detect Human Behavior in Common Areas
构建智能高效的智慧空间,检测公共区域的人类行为
- DOI:
10.1109/isncc.2018.8530988 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Shelke;Jacob Harbour;Baris Aksanli - 通讯作者:
Baris Aksanli
The case for ambient sensing for human activity detection
用于人类活动检测的环境传感案例
- DOI:
10.1145/3277593.3277628 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Neha Belapurkar;S. Shelke;Baris Aksanli - 通讯作者:
Baris Aksanli
Baris Aksanli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baris Aksanli', 18)}}的其他基金
NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
- 批准号:
1830331 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2203412 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002821 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002874 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003081 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003098 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003111 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2003131 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
- 批准号:
2003279 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003082 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant