NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
基本信息
- 批准号:1830399
- 负责人:
- 金额:$ 67.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wildfires destroy millions of hectares of forest, sensitive ecological systems, and human infrastructure. A critical aspect of mitigating wildfire-related damages is early fire detection, well before initiating fires grow to disastrous proportions. Current practices are based on expensive assets, such as satellites, watchtowers, and remote-piloted aircraft, that require constant human supervision, limiting their use to high-risk or high-value areas. This project aims to take advantage of the hyperconvergence of computation, storage, sensing, and communication in small unmanned aerial vehicles (UAVs) to realize large-scale mapping of environmental factors such as temperature, vegetation, pressure, and chemical concentration that contribute to fire initiation. UAV teams that recharge autonomously and communicate intermittently among each other and with static sensors is a compelling research objective that will aid firefighters with continuous real-time surveillance and early detection of ensuing fires.This proposal offers three fundamental innovations to address the scientific challenges associated with autonomous, collaborative environmental monitoring. First, a new Satisfiability Modulo Optimal Control framework is proposed to handle mixed continuous flight dynamics and discrete constraints and ensure collision avoidance, persistent communication, and autonomous recharging for UAV navigation. Second, a distributed systems architecture using new uncertainty-weighted models will be developed to enable cooperative mapping across a heterogeneous team of UAVs and static sensors and avoid bandwidth-intensive data streaming. Lastly, a new Bayesian learning and inference approach is proposed to generate multi-modal (e.g., thermal, semantic, geometric, chemical) maps of real-time environmental conditions with adaptive accuracy and uncertainty quantification. This project with its focus on multi-robot teams benefits, e.g., conservation management and search-and-rescue operations. Both applications demand robot coordination, cooperation, and autonomy, including multi-modal mapping, collaborative inference over heterogeneous networks, and multi-objective navigation with safety, communication, and energy constraints.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
野火摧毁了数百万公顷的森林、敏感的生态系统和人类基础设施。减轻野火相关损害的一个关键方面是在火灾发展到灾难性程度之前及早发现火灾。目前的做法是基于昂贵的资产,如卫星、了望塔和遥控飞机,这些资产需要不断的人力监督,将其使用限制在高风险或高价值地区。该项目旨在利用小型无人机(UAV)中计算,存储,传感和通信的超收敛性,实现对温度,植被,压力和化学浓度等环境因素的大规模测绘,这些因素有助于引发火灾。无人机团队可以自主充电,并在彼此之间以及与静态传感器进行间歇性通信,这是一个引人注目的研究目标,将有助于消防员进行持续的实时监视和早期发现随后发生的火灾。该提案提供了三项基本创新,以解决与自主协作环境监测相关的科学挑战。首先,提出了一种新的可满足性模最优控制框架,以处理混合的连续飞行动力学和离散约束,并确保避免碰撞,持续通信,和自主充电的无人机导航。其次,将开发一种使用新的不确定性加权模型的分布式系统架构,以实现跨无人机和静态传感器的异构团队的协作映射,并避免带宽密集型数据流。最后,提出了一种新的贝叶斯学习和推理方法来生成多模态(例如,具有自适应精度和不确定性量化的实时环境条件的热、语义、几何、化学)地图。该项目专注于多机器人团队的好处,例如,保护管理和搜救行动。这两个应用都要求机器人协调、合作和自主,包括多模态映射、异构网络上的协作推理以及具有安全、通信和能源约束的多目标导航。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stabilizing Neural Control Using Self-Learned Almost Lyapunov Critics
- DOI:10.1109/icra48506.2021.9560886
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Ya-Chien Chang;Sicun Gao
- 通讯作者:Ya-Chien Chang;Sicun Gao
Hypothesis assignment and partial likelihood averaging for cooperative estimation
协作估计的假设分配和部分似然平均
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Paritosh, P.;Atanasov, N.;Martinez, S.
- 通讯作者:Martinez, S.
Frequency-aware Trajectory and Power Control for Multi-UAV Systems
- DOI:10.1109/infocomwkshps51825.2021.9484552
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Jason Ma;M. Ostertag;Dinesh Bharadia;Tajana Simunic
- 通讯作者:Jason Ma;M. Ostertag;Dinesh Bharadia;Tajana Simunic
Distributed Gaussian Process Mapping for Robot Teams with Time-varying Communication
- DOI:10.23919/acc53348.2022.9867415
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:James Di;Ehsan Zobeidi;Alec Koppel;Nikolay A. Atanasov
- 通讯作者:James Di;Ehsan Zobeidi;Alec Koppel;Nikolay A. Atanasov
Reducing Collision Checking for Sampling-Based Motion Planning Using Graph Neural Networks
- DOI:10.48550/arxiv.2210.08864
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Chen-Ping Yu;Sicun Gao
- 通讯作者:Chen-Ping Yu;Sicun Gao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolay Atanasov其他文献
Hamiltonian Dynamics Learning from Point Cloud Observations for Nonholonomic Mobile Robot Control
非完整移动机器人控制的点云观测的哈密顿动力学学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Abdullah Altawaitan;Jason Stanley;Sambaran Ghosal;T. Duong;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Distributed Optimization with Consensus Constraint for Multi-Robot Semantic Octree Mapping
具有一致性约束的多机器人语义八叉树映射的分布式优化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arash Asgharivaskasi;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Sensor-Based Distributionally Robust Control for Safe Robot Navigation in Dynamic Environments
基于传感器的分布式鲁棒控制,实现动态环境中机器人的安全导航
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kehan Long;Yinzhuang Yi;Zhirui Dai;Sylvia Herbert;Jorge Cort'es;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Safe Stabilizing Control for Polygonal Robots in Dynamic Elliptical Environments
动态椭圆环境中多边形机器人的安全稳定控制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kehan Long;Khoa Tran;Melvin Leok;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities
传感器网络中的分布式贝叶斯估计:边缘密度共识
- DOI:
10.48550/arxiv.2312.01227 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. Paritosh;Nikolay Atanasov;Sonia Martinez - 通讯作者:
Sonia Martinez
Nikolay Atanasov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolay Atanasov', 18)}}的其他基金
CAREER: Active Bayesian Inference for Collaborative Robot Mapping
职业:协作机器人绘图的主动贝叶斯推理
- 批准号:
2045945 - 财政年份:2021
- 资助金额:
$ 67.5万 - 项目类别:
Continuing Grant
RI: Small: Representation Learning for Semantic Mapping and Safe Robot Navigation
RI:小型:语义映射和安全机器人导航的表示学习
- 批准号:
2007141 - 财政年份:2020
- 资助金额:
$ 67.5万 - 项目类别:
Continuing Grant
CRII: RI: Lyapunov-Certified Cognitive Control for Safe Autonomous Navigation in Unknown Environments
CRII:RI:用于未知环境中安全自主导航的李亚普诺夫认证认知控制
- 批准号:
1755568 - 财政年份:2018
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001119 - 财政年份:2020
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001120 - 财政年份:2020
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
- 批准号:
2001216 - 财政年份:2020
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
- 批准号:
1924723 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
- 批准号:
1949346 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
- 批准号:
1924303 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Optimal Design of Robust Compliant Actuators for Ubiquitous Co-Robots
NRI:FND:COLLAB:针对无处不在的协作机器人的鲁棒合规执行器的优化设计
- 批准号:
1953908 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Hierarchical Safe, and Distributed Feedback Control of Multiagent Legged Robots for Cooperative Locomotion and Manipulation
NRI:FND:COLLAB:用于协作运动和操纵的多智能腿机器人的分层安全分布式反馈控制
- 批准号:
1924617 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Hierarchical Safe, and Distributed Feedback Control of Multiagent Legged Robots for Cooperative Locomotion and Manipulation
NRI:FND:COLLAB:用于协作运动和操纵的多智能腿机器人的分层安全分布式反馈控制
- 批准号:
1924526 - 财政年份:2019
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Intuitive, Wearable Haptic Devices for Communication with Ubiquitous Robots
NRI:FND:COLLAB:用于与无处不在的机器人通信的直观、可穿戴触觉设备
- 批准号:
1830146 - 财政年份:2018
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant














{{item.name}}会员




