CAREER: Active Bayesian Inference for Collaborative Robot Mapping
职业:协作机器人绘图的主动贝叶斯推理
基本信息
- 批准号:2045945
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial perception techniques, allowing robot systems to know their location and surroundings using sensory data, have been instrumental for enabling robot automation outside of carefully controlled manufacturing settings. Current robot systems, however, remain passive in their perception of the world. Unlike biological systems, robots lack curiosity mechanisms for exploration and uncertainty mitigation, which are critical for intelligent decision making. Such capabilities are very important in disaster response, security and surveillance, and environmental monitoring, where it is necessary to quickly gain situational awareness of the terrain, buildings, and humans in the environment. The methods developed in this project will impact the design of mapping and active sensing algorithms for autonomous robot teams and their use in the aforementioned applications. This Faculty Early Career Development (CAREER) Program research develops fundamental robot autonomy capabilities that will also impact other domains relying on autonomous robots. In addition, the project will develop a suite of open-source education materials, including theoretical problems, projects, lectures, and exemplary implementations of core robotics algorithms, unified in an easily accessible simulation environment. This platform will support curriculum development for graduate students, as well as outreach and research-initiation activities for undergraduate and K-12 students.The research agenda will be achieved through two key technical innovations. First, the project will formally define an Active Bayesian Inference problem, seeking optimal control of sensing systems for minimum uncertainty estimation. Methods for distributed approximate dynamic programming that utilize the structure of the problem, induced by the functions modeling probability mass evolution and estimation performance, will be developed to efficiently represent and optimize multi-robot sensing control policies. Second, the project will demonstrate that a team of ground and aerial robots, using Active Bayesian Inference techniques, can achieve autonomous exploration and active high-fidelity mapping of an unknown environment. This objective will be supported by novel contributions to online dense implicit surface mapping in terms of distributed and probabilistic techniques that allow multiple robots to collaboratively estimate the environment geometry and semantics, while quantifying the uncertainty of these estimates to allow planning informative actions.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工感知技术允许机器人系统使用传感数据来了解它们的位置和周围环境,这对于在仔细控制的制造环境之外实现机器人自动化至关重要。然而,目前的机器人系统在感知世界方面仍然是被动的。与生物系统不同,机器人缺乏探索和缓解不确定性的好奇心机制,这对智能决策至关重要。这种能力在灾害应对、安全和监视以及环境监测方面非常重要,因为在这些方面,需要迅速了解环境中的地形、建筑物和人员的情况。在这个项目中开发的方法将影响自主机器人团队的映射和主动传感算法的设计及其在上述应用中的使用。这项教师早期职业发展(CAREER)计划的研究开发了基本的机器人自主能力,这也将影响依赖自主机器人的其他领域。此外,该项目将开发一套开源教育材料,包括理论问题,项目,讲座和核心机器人算法的示例性实现,统一在一个易于访问的模拟环境中。该平台将支持研究生的课程开发,以及本科生和K-12学生的外联和研究启动活动。研究议程将通过两项关键技术创新来实现。首先,该项目将正式定义一个主动贝叶斯推理问题,寻求最小不确定性估计的传感系统的最佳控制。分布式近似动态规划的方法,利用问题的结构,诱导的功能建模概率质量演化和估计性能,将开发有效地表示和优化多机器人传感控制策略。其次,该项目将证明,一组地面和空中机器人,使用主动贝叶斯推理技术,可以实现自主探索和主动高保真地图的未知环境。这一目标将得到在线密集隐式表面映射的分布式和概率技术的新贡献的支持,该技术允许多个机器人协作估计环境几何形状和语义,同时量化这些估计的不确定性,以允许规划信息行动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration
- DOI:10.1109/tro.2023.3245986
- 发表时间:2021-12
- 期刊:
- 影响因子:7.8
- 作者:Arash Asgharivaskasi;Nikolay A. Atanasov
- 通讯作者:Arash Asgharivaskasi;Nikolay A. Atanasov
Distributed Bayesian Estimation of Continuous Variables Over Time-Varying Directed Networks
时变有向网络连续变量的分布式贝叶斯估计
- DOI:10.1109/lcsys.2022.3167654
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Paritosh, Parth;Atanasov, Nikolay;Martinez, Sonia
- 通讯作者:Martinez, Sonia
Active Mapping via Gradient Ascent Optimization of Shannon Mutual Information over Continuous SE(3) Trajectories
- DOI:10.1109/iros47612.2022.9981875
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Arash Asgharivaskasi;Shumon Koga;Nikolay A. Atanasov
- 通讯作者:Arash Asgharivaskasi;Shumon Koga;Nikolay A. Atanasov
Learning Continuous Control Policies for Information-Theoretic Active Perception
学习信息论主动感知的连续控制策略
- DOI:10.1109/icra48891.2023.10160455
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yang, Pengzhi;Liu, Yuhan;Koga, Shumon;Asgharivaskasi, Arash;Atanasov, Nikolay
- 通讯作者:Atanasov, Nikolay
Policy Learning for Active Target Tracking over Continuous SE(3) Trajectories
连续 SE(3) 轨迹上主动目标跟踪的策略学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yang, Pengzhi;Koga, Shumon;Asgharivaskasi, Arash;Atanasov, Nikolay
- 通讯作者:Atanasov, Nikolay
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolay Atanasov其他文献
Hamiltonian Dynamics Learning from Point Cloud Observations for Nonholonomic Mobile Robot Control
非完整移动机器人控制的点云观测的哈密顿动力学学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Abdullah Altawaitan;Jason Stanley;Sambaran Ghosal;T. Duong;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Distributed Optimization with Consensus Constraint for Multi-Robot Semantic Octree Mapping
具有一致性约束的多机器人语义八叉树映射的分布式优化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Arash Asgharivaskasi;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Sensor-Based Distributionally Robust Control for Safe Robot Navigation in Dynamic Environments
基于传感器的分布式鲁棒控制,实现动态环境中机器人的安全导航
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kehan Long;Yinzhuang Yi;Zhirui Dai;Sylvia Herbert;Jorge Cort'es;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Safe Stabilizing Control for Polygonal Robots in Dynamic Elliptical Environments
动态椭圆环境中多边形机器人的安全稳定控制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kehan Long;Khoa Tran;Melvin Leok;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities
传感器网络中的分布式贝叶斯估计:边缘密度共识
- DOI:
10.48550/arxiv.2312.01227 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. Paritosh;Nikolay Atanasov;Sonia Martinez - 通讯作者:
Sonia Martinez
Nikolay Atanasov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolay Atanasov', 18)}}的其他基金
RI: Small: Representation Learning for Semantic Mapping and Safe Robot Navigation
RI:小型:语义映射和安全机器人导航的表示学习
- 批准号:
2007141 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
- 批准号:
1830399 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CRII: RI: Lyapunov-Certified Cognitive Control for Safe Autonomous Navigation in Unknown Environments
CRII:RI:用于未知环境中安全自主导航的李亚普诺夫认证认知控制
- 批准号:
1755568 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
光—电驱动下的AIE-active手性高分子CPL液晶器件研究
- 批准号:92156014
- 批准年份:2021
- 资助金额:70.00 万元
- 项目类别:国际(地区)合作与交流项目
光-电驱动下的AIE-active手性高分子CPL液晶器件研究
- 批准号:
- 批准年份:2021
- 资助金额:70 万元
- 项目类别:
相似海外基金
NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
NE/X000656/1 - 财政年份:2025
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Care on the move: active travel and the everyday mobilities of children with non-visible disabilities
移动护理:非明显残疾儿童的积极旅行和日常活动
- 批准号:
ES/X010880/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
- 批准号:
EP/Y003144/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Implementation Grant: Active Societal Participation In Research and Education
合作研究:实施补助金:社会积极参与研究和教育
- 批准号:
2326774 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
- 批准号:
2327094 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Bio-active過酸化チタンナノ粒子を併用した革新的放射線免疫療法の開発
使用生物活性过氧化钛纳米粒子开发创新放射免疫疗法
- 批准号:
24K10760 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)