Scaling limits of the electronic Schrödinger equation fordiatomic molecules: Asymptotic prediction of correlation structure,potential energy curves, and symmetry quantum numbers
双原子分子电子薛定谔方程的标度极限:相关结构、势能曲线和对称量子数的渐近预测
基本信息
- 批准号:234732874
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The electronic Schrödinger equation plays a central role in molecular physics and quantum chemistry as it provides a quantitative and chemically specific description of a molecule's electronic structure. However, rigorous mathematical work on this equation has hitherto focused on qualitative, universal aspects. Here we will develop methods for the rigorous extraction of quantitative and chemically specific predictions in natural scaling limits, (i) the limit of high nuclear charge at fixed electron number and (ii) the double-limit of high nuclear charge and large interatomic distance. Explicit asymptotic results on correlation structure, potential energy curves, and symmetry quantum numbers will be worked out for the homonuclear dimer series H_2, He_2, Li_2, Be_2, B_2, C_2, N_2, O_2, F_2, Ne_2. This will require generalizing the functional-analytic and symmetry-reduction methods of Friesecke and Goddard [1, 2] from atoms to dimers, careful use of the theory of the single-electron Schrödinger equation for diatomic molecules, and utilization of symbolic computer packages such as Mathematics to handle cases with six or more electrons.The asymptotic results will be compared to experimental data, to the semi-empirical picture of Hund-Mulliken molecular orbital theory (we expect, based on analogous findings for atoms [1, 2], that asymptotic ground states in regime (ii) are similar to this picture), and state-of-the-art computational methods (both of wave function and density functional type). The envisioned results will establish, for the first time, a rigorous link between the quantitative precision of the Schrödinger equation and semi-empirical concepts of chemical bonding, elucidate mathematically the mechanisms leading to the high chemical specificity of bond formation, and provide rare benchmark correlated many-electron data for the design and validation of computational methods.
电子薛定谔方程在分子物理和量子化学中起着核心作用,因为它提供了分子电子结构的定量和化学特定描述。然而,迄今为止,关于这个方程的严格的数学工作集中在定性的、普遍的方面。在这里,我们将开发的方法,严格提取定量和化学的具体预测在自然标度限制,(i)高核电荷的限制在固定的电子数和(ii)高核电荷和大原子间距离的双重限制。对H_2,He_2,Li_2,Be_2,B_2,C_2,N_2,O_2,F_2,Ne_2系列均二聚体,给出了关联结构、势能曲线和对称量子数的显式渐近结果。这就需要将Friesecke和戈达德[1,2]的泛函分析和量子化方法从原子推广到二聚体,仔细使用双原子分子的单电子薛定谔方程理论,并利用数学等符号计算机软件包来处理六个或更多电子的情况。渐近结果将与实验数据进行比较,Hund-Mulliken分子轨道理论的半经验图像(我们期望,基于原子的类似发现[1,2],在制度(ii)中的渐近基态与此图像相似),以及最先进的计算方法(波函数和密度泛函类型)。设想的结果将首次建立薛定谔方程的定量精度与化学键合的半经验概念之间的严格联系,从数学上阐明导致键形成的高化学特异性的机制,并为计算方法的设计和验证提供罕见的基准相关多电子数据。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Density-Functional Theory for Strongly Correlated Bosonic and Fermionic Ultracold Dipolar and Ionic Gases.
强相关玻色子和费米子超冷偶极和离子气体的密度泛函理论
- DOI:10.1103/physrevlett.115.033006
- 发表时间:2015
- 期刊:
- 影响因子:8.6
- 作者:Francesc Malet;André Mirtschink;Christian B. Mendl;Johannes Bjerlin;Elife Ö. Karabulut;Stephanie M. Reimann;Paola Gori-Giorgi
- 通讯作者:Paola Gori-Giorgi
N-density representability and the optimal transport limit of the Hohenberg-Kohn functional.
Hohenberg-Kohn 泛函的 N 密度表示性和最佳输运极限
- DOI:10.1063/1.4821351
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Gero Friesecke;Christian B. Mendl;Brendan Pass;Codina Cotar;Claudia Klüppelberg
- 通讯作者:Claudia Klüppelberg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Gero Friesecke其他文献
Professor Dr. Gero Friesecke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant