EAGER: Toward a General Framework for Optimal Experimentation in Computational Cognition
EAGER:建立计算认知优化实验的通用框架
基本信息
- 批准号:1834323
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cognitive science aims to gain detailed insight into the underlying mechanisms of cognitive tasks. To achieve this, researchers change factors affecting a task in an experiment and observe responses. One way to learn from such an experiment is to build and test a computational model of stimulus-response relationships. However, the level of detail with which a model describes a task requires as much detail in supporting data. As observations from experiments are often expensive (e.g., child subject), this is a rather significant barrier. The method of optimal experiments can be a solution. It can optimize the selection of stimuli to maximize inference from responses. Nonetheless, the difficulty in applying the method to each new experiment has been a stumbling block. This project proposes to lay the foundation for a general framework for optimal experiments. The goal is to make it applicable to a wide range of modeling problems in cognitive science. This will help cognitive scientists to develop quantitative accounts of cognitive tasks effectively. Further, the method has the potential to accelerate scientific discovery broadly in social and behavioral research.Conducting cognitive science experiments guided by optimal interaction with subjects toward a clear, quantified inference goal is a powerful idea. Such a method is particularly enticing for behavioral experiments in which the amount of noise in response is so great as to require many repeated measurements. Despite its groundbreaking potential for cognitive modeling research, the method of optimal experimentation is out of reach for most researchers in the field. The formidable task of implementing it for each unique experimental paradigm has been an obstacle to the realization of the methodology's promising power. The project focuses on establishing the technical feasibility of optimal experiments in arbitrary cognitive modeling contexts. The proposed research will define the need for the methodology in the field clearly, identify suitable computational strategies, and test alternative algorithms in simulation studies. The performance of algorithms under consideration will be evaluated on a testbed of modeling paradigms whose successful treatment would transfer to a wide range of similar problems. The project aims to create a tangible blueprint for a general-purpose methodology for optimal experimentation in computational cognition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
认知科学旨在详细了解认知任务的潜在机制。为了实现这一目标,研究人员在实验中改变影响任务的因素并观察反应。从此类实验中学习的一种方法是建立并测试刺激-反应关系的计算模型。然而,模型描述任务的详细程度需要支持数据的详细程度。由于实验观察通常很昂贵(例如儿童受试者),因此这是一个相当重要的障碍。最优实验方法可以作为解决方案。它可以优化刺激的选择,以最大限度地从响应中进行推断。尽管如此,将该方法应用于每个新实验的困难一直是一个绊脚石。该项目旨在为优化实验的总体框架奠定基础。目标是使其适用于认知科学中的广泛建模问题。这将有助于认知科学家有效地开发认知任务的定量描述。此外,该方法有可能广泛加速社会和行为研究中的科学发现。在与受试者的最佳互动的指导下进行认知科学实验,以实现清晰、量化的推理目标,这是一个强大的想法。这种方法对于行为实验特别有吸引力,在行为实验中,响应的噪声量很大,需要多次重复测量。尽管其在认知建模研究方面具有突破性的潜力,但最佳实验方法对于该领域的大多数研究人员来说是遥不可及的。为每个独特的实验范式实施它的艰巨任务一直是实现该方法的有希望的力量的障碍。该项目的重点是在任意认知建模环境中建立最佳实验的技术可行性。拟议的研究将明确定义该领域对该方法的需求,确定合适的计算策略,并在模拟研究中测试替代算法。正在考虑的算法的性能将在建模范例的测试平台上进行评估,其成功的处理将转移到广泛的类似问题。该项目旨在为计算认知最佳实验的通用方法创建一个切实的蓝图。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Woojae Kim其他文献
A theoretical note on the prior information criterion
关于先验信息标准的理论说明
- DOI:
10.1016/j.jmp.2017.06.002 - 发表时间:
2017 - 期刊:
- 影响因子:1.8
- 作者:
S. Steegen;Woojae Kim;W. Pestman;F. Tuerlinckx;Wolf Vanpaemel - 通讯作者:
Wolf Vanpaemel
Low-energy elementary excitations in frustrated quantum magnets probed by thermal and thermal Hall conductivities
通过热导率和热霍尔导率探测受挫量子磁体中的低能基本激发
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Fengkun Chen;Takayuki Tanaka;Yongseok Hong;Woojae Kim;Dongho Kim;and Atsuhiro Osuka;開沼 博;Yuji Matsuda - 通讯作者:
Yuji Matsuda
Effect of bite distance of an epitendinous suture from the repair site on the tensile strength of canine tendon constructs.
修复部位的腱外缝合线咬合距离对犬肌腱结构拉伸强度的影响。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1
- 作者:
D. Duffy;C. Cocca;M. Kersh;Woojae Kim;G. Moore - 通讯作者:
G. Moore
Coherent photoexcitation of entangled triplet pair states.
纠缠三重态对态的相干光激发。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:21.8
- 作者:
Juno Kim;David C. Bain;Vivian Ding;Kanad Majumder;Dean Windemuller;Jiaqi Feng;Jishan Wu;Satish Patil;John E Anthony;Woojae Kim;A. Musser - 通讯作者:
A. Musser
Cognitive Mechanisms 1 Running head : COGNITIVE MECHANISMS UNDERLYING DECISION-MAKING 1 2 3 4 5 Cognitive Mechanisms Underlying Risky Decision-Making in Chronic Cannabis Users 6 7
认知机制 1 运行头:决策基础的认知机制 1 2 3 4 5 慢性大麻使用者风险决策的认知机制 6 7
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Daniel J Fridberg;S. Queller;W. Ahn;Woojae Kim;8. AnthonyJ.;Bishara;J. Busemeyer;L. Porrino;J. Stout - 通讯作者:
J. Stout
Woojae Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
相似海外基金
Corresponding to general history exhibition considering the background of the establishment of the regional biota: Toward the renewal of the regional museum
对应于考虑区域生物群建立背景的一般历史展览:走向区域博物馆的更新
- 批准号:
21K01011 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Toward Artificial General Intelligence for Complex Adaptive Systems: A Natural Concurrent “Learning-in-Learning” Control Paradigm
职业:走向复杂自适应系统的通用人工智能:自然并发“学习中学习”控制范式
- 批准号:
2047064 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Toward a general thoery of statistical and stochastic fields using fermion point processes and conformally invariant SLE curves
使用费米子点过程和共形不变 SLE 曲线建立统计和随机场的一般理论
- 批准号:
19K03674 - 财政年份:2019
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
General Strategies Toward Mechanically Robust Biobased Polymers and Composites
机械鲁棒性生物基聚合物和复合材料的一般策略
- 批准号:
1806792 - 财政年份:2018
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Toward a general framework for how environmental change affects herbivore-plant interactions
建立环境变化如何影响食草动物与植物相互作用的总体框架
- 批准号:
402006-2013 - 财政年份:2017
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual
Development of general-purpose hydrofoil bubble generators for ship drag reduction toward practical application to deep-draft ships
开发用于船舶减阻的通用水翼气泡发生器,以实际应用于深吃水船舶
- 批准号:
17H03499 - 财政年份:2017
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Toward a general framework for how environmental change affects herbivore-plant interactions
建立环境变化如何影响食草动物与植物相互作用的总体框架
- 批准号:
402006-2013 - 财政年份:2016
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual
Toward a general framework for how environmental change affects herbivore-plant interactions
建立环境变化如何影响食草动物与植物相互作用的总体框架
- 批准号:
402006-2013 - 财政年份:2015
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual
Toward a general framework for how environmental change affects herbivore-plant interactions
建立环境变化如何影响食草动物与植物相互作用的总体框架
- 批准号:
402006-2013 - 财政年份:2014
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual
Toward a general theory of East Asian philosophy: The Kyoto School and New Confucianism
走向东亚哲学的一般理论:京都学派与新儒家
- 批准号:
26770001 - 财政年份:2014
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)