Collaborative Research: Framework: Software: HDR: Building the Twenty-First Century Citizen Science Framework to Enable Scientific Discovery Across Disciplines
合作研究:框架:软件:HDR:构建二十一世纪公民科学框架以实现跨学科的科学发现
基本信息
- 批准号:1835574
- 负责人:
- 金额:$ 19.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A team of experts from five institutions (University of Minnesota, Adler Planetarium, University of Wyoming, Colorado State University, and UC San Diego) links field-based and online analysis capabilities to support citizen science, focusing on three research areas (cell biology, ecology, and astronomy). The project builds on Zooniverse and CitSci.org, leverages the NSF Science Gateways Community Institute, and enhances the quality of citizen science and the experience of its participants.This project creates an integrated Citizen Science Cyberinfrastructure (CSCI) framework that expands the capacity of research communities across several disciplines to use citizen science as a suitable and sustainable research methodology. CSCI produces three improvements to the infrastructure for citizen science already provided by Zooniverse and CitSci.org: - Combining Modes - connecting the process of data collection and analysis; - Smart Assignment - improving the assignment of tasks during analysis; and - New Data Models - exploring the Data-as-Subject model. By treating time series data as data, this model removes the need to create images for classification and facilitates more complex workflows. These improvements are motivated and investigated through three distinct scientific cases: - Biomedicine (3D Morphology of Cell Nucleus). Currently, Zooniverse 'Etch-a-Cell' volunteers provide annotations of cellular components in images from high-resolution microscopy, where a single cell provides a stack containing thousands of sliced images. The Smart Task Assignment capability incorporates this information, so volunteers are not shown each image in a stack where machines or other volunteers have already evaluated some subset of data. - Ecology (Identifying Individual Animals). When monitoring wide-ranging wildlife populations, identification of individual animals is needed for robust estimates of population sizes and trends. This use case combines field collection and data analysis with deep learning to improve results. - Astronomy (Characterizing Lightcurves). Astronomical time series data reveal a variety of behaviors, such as stellar flares or planetary transits. The existing Zooniverse data model requires classification of individual images before aggregation of results and transformation back to refer to the original data. By using the Data-as-Subject model and the Smart Task Assignment capability, volunteers will be able to scan through the entire time series in a machine-aided manner to determine specific light curve characteristics.The team explores the use of recurrent neural networks (RNNs) to determine automated learning architectures best suited to the projects. Of particular interest is how the degree to which neighboring subjects are coupled affects performance. The integration of existing tools, which is based on application programming interfaces (APIs), also facilitates further tool integration. The effort creates a citizen science framework that directly advances knowledge for three science use cases in biomedicine, ecology, and astronomy, and combines field-collected data with data analysis. This has the ability to solve key problems in the individual applications, as well as benefiting the research of the dozens of projects on the Zooniverse platform. It provides benefits to researchers using citizen scientists, and to the nearly 1.6 million citizen scientists themselves.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Research on Learning in Formal and Informal Settings, within the NSF Directorate for Education and Human Resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自五个机构(明尼苏达大学、阿德勒天文馆、怀俄明州大学、科罗拉多州立大学和加州大学圣地亚哥分校)的专家团队将基于现场的和在线分析能力联系起来,以支持公民科学,重点关注三个研究领域(细胞生物学、生态学和天文学)。 该项目建立在Zooniverse和CitSci.org的基础上,利用NSF科学网关社区研究所,提高公民科学的质量和参与者的经验。该项目创建了一个综合的公民科学网络基础设施(CSCI)框架,扩大了跨多个学科的研究社区的能力,将公民科学作为一种合适的和可持续的研究方法。 CSCI对Zooniverse和CitSci.org已经提供的公民科学基础设施进行了三项改进:-组合模式-连接数据收集和分析过程; -智能分配-改进分析期间的任务分配;和-新数据模型-探索数据作为主题模型。 通过将时间序列数据视为数据,该模型消除了创建图像进行分类的需要,并促进了更复杂的工作流程。 这些改进的动机和研究通过三个不同的科学案例:-生物医学(细胞核的3D形态学)。 目前,Zooniverse 'Etch-a-Cell'志愿者在高分辨率显微镜图像中提供细胞成分的注释,其中单个细胞提供包含数千个切片图像的堆栈。 智能任务分配功能包含了这些信息,因此志愿者不会在机器或其他志愿者已经评估了一些数据子集的堆栈中显示每个图像。- 生态学(识别个体动物)。 在监测广泛的野生动物种群时,需要识别个体动物,以便对种群规模和趋势进行可靠的估计。 该用例将现场收集和数据分析与深度学习相结合,以改善结果。- 天文学(表征光变曲线)。 天文时间序列数据揭示了各种行为,如恒星耀斑或行星凌日。 现有的Zooniverse数据模型需要对单个图像进行分类,然后才能聚合结果并转换回原始数据。 通过使用数据作为主题模型和智能任务分配功能,志愿者将能够以机器辅助的方式扫描整个时间序列,以确定特定的光曲线特征。该团队探索使用递归神经网络(RNN)来确定最适合项目的自动学习架构。 特别令人感兴趣的是,相邻主体的耦合程度如何影响性能。基于应用程序编程接口(API)的现有工具的集成也促进了进一步的工具集成。 这项工作创建了一个公民科学框架,直接推进生物医学、生态学和天文学三个科学用例的知识,并将实地收集的数据与数据分析相结合。这有能力解决单个应用中的关键问题,并有利于Zooniverse平台上数十个项目的研究。它为使用公民科学家的研究人员以及近160万公民科学家本身提供了好处。高级网络基础设施办公室的这一奖项由正式和非正式环境中的学习研究司共同支持,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Newman其他文献
Theta and Learning: Dorsal and Ventral Hippocampal Theta Oscillation Respond Differently to Learning
Theta 与学习:背侧和腹侧海马 Theta 振荡对学习的反应不同
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Gregory Newman - 通讯作者:
Gregory Newman
Gregory Newman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Newman', 18)}}的其他基金
I-Corps: Citizen science technology platform
I-Corps:公民科学技术平台
- 批准号:
1817612 - 财政年份:2018
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
SI2-SSI: Advancing and Mobilizing Citizen Science Data through an Integrated Sustainable Cyber-Infrastructure
SI2-SSI:通过集成的可持续网络基础设施推进和动员公民科学数据
- 批准号:
1550463 - 财政年份:2016
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
SI2-SSE: Developing Sustainable Software Elements to Support the Growing Field of Public Participation in Scientific Research
SI2-SSE:开发可持续软件元素以支持不断增长的公众参与科学研究领域
- 批准号:
1339707 - 财政年份:2013
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342748 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 19.29万 - 项目类别:
Standard Grant