Collaborative Research: Framework: Software: NSCI : Computational and data innovation implementing a national community hydrologic modeling framework for scientific discovery

合作研究:框架:软件:NSCI:计算和数据创新实施国家社区水文建模框架以促进科学发现

基本信息

  • 批准号:
    1835569
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

This award supports the design and implementation of a software framework to simulate the movement of water at various scales. Understanding the movement and availability of water locally and across the country is of paramount importance to economic productivity and human health of our nation. Hydrologic scientists, are actively tackling these challenges using increasingly complex computational methods. However, modeling advances have not been easily translated to the broader community of scientists and professionals due to technical barriers to entry. This software platform draws from computer models and employs supercomputers capable of analyzing big data to provide unprecedented simulations of water movement over the continental US. Combining hydrologists and computer scientists the team behind the project envision a broad community of users who will have multiple ways to interact with the software framework. For the hydrologic scientist who is interested in generating their own scenarios the framework will facilitate direct interaction with the hydrologic models and the ability to generate simulations on the fly. Conversely, the framework will also provide a set of static output and a range of tools for a broader set of users who would like to evaluate hydrologic projections locally or extract model data for use in other analyses.Continental scale simulation of water flow through rivers, streams and groundwater is an identified grand challenge in hydrology. Decades of model development, combined with advances in solver technology and software engineering have enabled large-scale, high-resolution simulations of the hydrologic cycle over the US, yet substantial technical and communication challenges remain. With support from this award, an interdisciplinary team of computer scientists and hydrologists is developing a framework to leverage advances in computer science transforming simulation and data-driven discovery in the Hydrologic Sciences and beyond. This project is advancing the science behind these national scale hydrologic models, accelerating their capabilities and building novel interfaces for user interaction. The framework brings computational and domain science (hydrology) communities together to move more quickly from tools (models, big data, high-performance computing) to discoveries. It facilitates decadal, national scale simulations, which are an unprecedented resource for both the hydrologic community and the much broader community of people working in water dependent systems (e.g., biological system, energy and food production). These simulations will enable the community to address scientific questions about water availability and dynamics from the watershed to the national scale. Additionally, this framework is designed to facilitate multiple modes of interaction and engage a broad spectrum of users outside the hydrologic community. We will provide easy-to-access pre-processed datasets that can be visualized and plotted using built-in tools that will require no computer science or hydrology background. Recognizing that most hydrology training does not generally include High Performance Computing and data analytics or software engineering, this framework will provide a gateway for computationally enhanced hydrologic discovery. Additionally, for educators we will develop packaged videos and educational modules on different hydrologic systems geared towards K-12 classrooms.This award by the NSF Office of Advanced Cyberinfrastructure is jointly supported by the Cross-Cutting Activities Program of the Division of Earth Sciences within the NSF Directorate for Geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持设计和实施软件框架,以模拟各种规模的水的运动。了解当地和全国水的流动和可用性对于我们国家的经济生产力和人类健康至关重要。水文科学家正在使用日益复杂的计算方法积极应对这些挑战。但是,由于进入技术障碍,建模进步并不容易转化为更广泛的科学家和专业人士社区。该软件平台从计算机模型中汲取灵感,并采用了能够分析大数据的超级计算机,以在美国大陆上提供空前的水流动模拟。将水文学家和计算机科学家结合起来,该项目背后的团队设想了一个广泛的用户社区,这些用户将有多种与软件框架互动的方法。对于有兴趣产生自己的方案感兴趣的水文科学家,该框架将有助于与水文模型的直接互动,并能够即时生成模拟。相反,该框架还将为一组更广泛的用户提供一系列静态输出和一系列工具,这些用户希望在本地评估水文预测,或提取用于其他分析的模型数据。对河流,溪流和地下水的水流模拟模拟在水文学中是确定的大挑战。数十年的模型开发以及求解器技术和软件工程方面的进步已经使整个美国水文周期的大规模高分辨率模拟了,但仍然存在实质性的技术和沟通挑战。在该奖项的支持下,一个计算机科学家和水文学家的跨学科团队正在开发一个框架,以利用计算机科学的进步,以转换水文科学及其他地区的模拟和数据驱动的发现。该项目正在推进这些国家规模水文模型背后的科学,加速了它们的功能并为用户互动构建了新的界面。该框架将计算和领域科学(水文学)社区融合在一起,以更快地从工具(模型,大数据,高性能计算)移动到发现。它促进了衰老的国家规模模拟,这是水文社区和更广泛的水位依赖性系统(例如生物系统,能源和粮食生产)的更广泛社区的前所未有的资源。这些模拟将使社区能够解决有关从分水岭到国家规模的动态的科学问题。此外,该框架旨在促进多种互动模式,并吸引水文社区之外的广泛用户。我们将提供易于访问的预处理数据集,这些数据集可以使用无需计算机科学或水文学背景的内置工具可视化和绘制。认识到大多数水文培训通常不包括高性能计算和数据分析或软件工程,因此该框架将为计算增强的水文发现提供门户。此外,对于教育工作者,我们将开发针对K-12教室的不同水文系统的包装视频和教育模块。该奖项由NSF高级网络结构办公室颁发,由跨切割活动的跨裁切活动计划共同支持,该计划在NSF的Internal Interveration Interne Interne Interne Interne Internation Internation Internation dectunial dectunial dectunial dectunial dectunial dectunial dectulial dection dectional dectional dection decty decty te nsf''awtion nsf''奖。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Community Workflows to Advance Reproducibility in Hydrologic Modeling: Separating Model‐Agnostic and Model‐Specific Configuration Steps in Applications of Large‐Domain Hydrologic Models
  • DOI:
    10.1029/2021wr031753
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    W. Knoben;M. Clark;J. Bales;Andrew R. Bennett;S. Gharari;C. Marsh;Bart Nijssen;A. Pietroniro;R. Spiteri;D. Tarboton;A. Wood
  • 通讯作者:
    W. Knoben;M. Clark;J. Bales;Andrew R. Bennett;S. Gharari;C. Marsh;Bart Nijssen;A. Pietroniro;R. Spiteri;D. Tarboton;A. Wood
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Tarboton其他文献

David Tarboton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Tarboton', 18)}}的其他基金

EarthCube Data Capabilities: Collaborative Research: Integration of Reproducibility into Community CyberInfrastructure
EarthCube 数据功能:协作研究:将可重复性集成到社区网络基础设施中
  • 批准号:
    1928369
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis
合作研究:SI2-SSI:通过数据科学、建模和分析的协作集成推进水文知识的网络基础设施
  • 批准号:
    1664061
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
RAPID:Archiving and Enabling Community Access to Data from Recent US Hurricanes
RAPID:存档并允许社区访问最近美国飓风的数据
  • 批准号:
    1761673
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Student Learning in Hydrology & Water Resources Engineering by Enabling the Development, Sharing and Interoperability of Active Learning Resou
合作研究:提高学生的水文学学习
  • 批准号:
    1725989
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
EarthCube Building Blocks: Collaborative Proposal: GeoTrust: Improving Sharing and Reproducibility of Geoscience Applications
EarthCube 构建模块:协作提案:GeoTrust:提高地球科学应用的共享性和可重复性
  • 批准号:
    1639655
  • 财政年份:
    2016
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSI: An Interactive Software Infrastructure for Sustaining Collaborative Community Innovation in the Hydrologic Sciences
协作研究:SI2-SSI:用于维持水文科学领域协作社区创新的交互式软件基础设施
  • 批准号:
    1148453
  • 财政年份:
    2012
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of Adaptable Web Modules to Stimulate Active Learning in Hydrology using Data and Model Simulations
协作研究:开发适应性网络模块,利用数据和模型模拟促进水文学主动学习
  • 批准号:
    1122812
  • 财政年份:
    2011
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
U.S.-New Zealand Cooperative Research: Spatially Distributed Hydrologic Models and Spatial Patterns
美国-新西兰合作研究:空间分布水文模型和空间模式
  • 批准号:
    9724720
  • 财政年份:
    1997
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Geomorphological Processes, Scale and the Evolution of Fluvial Landforms
地貌过程、规模和河流地貌的演化
  • 批准号:
    9318977
  • 财政年份:
    1994
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant

相似国自然基金

多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
    22204104
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
  • 批准号:
    61571362
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
  • 批准号:
    61571033
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
  • 批准号:
    61401510
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342747
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了