Elements: Software: NSCI: A high performance suite of SVD related solvers for machine learning
要素: 软件:NSCI:用于机器学习的 SVD 相关求解器的高性能套件
基本信息
- 批准号:1835821
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The accrual of vast amounts of data is one of the defining characteristics of our century. With the help of computers, scientists use this data to make and test hypotheses, draw inferences, predict complex phenomena, and make educated policy decisions. Machine learning (ML) is an area in computer science that uses statistical methods to allow computers to "learn" from data, with and without human supervision. Central to the application of machine learning methods is the numerical computation of the Singular Value Decomposition (SVD) of matrices of very large dimension, often larger than a million or even a billion. Since "off-the-shelf" algorithms and SVD software, however, cannot handle matrices of very large dimension, iterative methods used in scientific computing are more appropriate. Yet their stringent approximation quality requirements are often excessive for downstream applications, and result in slow execution times. Recently, methods based on randomization have improved execution times, but their implementations relax the approximation quality, often to detrimental levels. This project proposes to develop a software package that unifies randomized and iterative methods with a particular focus on the specific requirements of various ML applications and with high performance optimizations for modern computing platforms. This will allow scientists to analyze significantly larger datasets, ML researchers to study large models that could not be tackled before, and ML service providers to use the new solvers to reduce their operational cost. This project proposes to develop a software package that unifies randomized and iterative methods with a particular focus on the specific requirements of various ML applications and with high performance optimizations for modern computing platforms. This will allow scientists to analyze significantly larger datasets, ML researchers to study large models that could not be tackled before, and ML service providers to use the new solvers to reduce their operational cost. Specifically, the software package builds upon the state-of-the-art eigenvalue/singular value software package PRIMME that integrates cutting-edge iterative methods and high-performance implementations. The development of the package consists of two thrusts: (T1) Unifying state-of-the-art algorithmic techniques including randomized, streaming, and iterative methods, to deliver consistent experience for a diverse range of matrices with different quality requirements, hardware platforms and precisions, and programming environments. (T2) Developing software devices that enable downstream systems and SVD solvers to interoperate so that users can tune and customize solvers without being experts in numeric linear algebra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海量数据的积累是我们这个世纪的决定性特征之一。在计算机的帮助下,科学家使用这些数据来做出和检验假设,得出推论,预测复杂的现象,并做出明智的政策决定。机器学习(ML)是计算机科学中的一个领域,它使用统计学方法允许计算机在有人监督和没有人监督的情况下从数据中“学习”。机器学习方法应用的中心是对非常大的维矩阵的奇异值分解(SVD)的数值计算,这些矩阵通常大于一百万甚至十亿。然而,由于“现成”算法和奇异值分解软件不能处理非常大的维矩阵,因此在科学计算中使用迭代方法更为合适。然而,它们严格的近似质量要求对于下游应用程序来说往往是过高的,并导致执行时间较慢。最近,基于随机化的方法改善了执行时间,但它们的实现放松了近似质量,往往达到有害的水平。该项目建议开发一个软件包,将随机化和迭代方法统一起来,特别关注各种ML应用的特定要求,并针对现代计算平台进行高性能优化。这将使科学家能够分析更大的数据集,ML研究人员可以研究以前无法解决的大型模型,ML服务提供商可以使用新的解算器来降低他们的运营成本。该项目建议开发一个软件包,将随机化和迭代方法统一起来,特别关注各种ML应用的特定要求,并针对现代计算平台进行高性能优化。这将使科学家能够分析更大的数据集,ML研究人员可以研究以前无法解决的大型模型,ML服务提供商可以使用新的解算器来降低他们的运营成本。具体地说,该软件包建立在最先进的特征值/奇异值软件包PRIMME的基础上,该软件包集成了尖端迭代方法和高性能实现。该包的开发包括两个方面:(1)统一包括随机化、流和迭代方法在内的最先进的算法技术,为具有不同质量要求、硬件平台和精度以及编程环境的各种矩阵提供一致的体验。(T2)开发软件设备,使下游系统和奇异值分解求解器能够互操作,以便用户无需成为数值线性代数专家即可调整和定制求解器。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Deep Learning Framework for Pricing Financial Instruments
- DOI:
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Qiong Wu;Zheng Zhang;A. Pizzoferrato;Mihai Cucuringu;Zhenming Liu
- 通讯作者:Qiong Wu;Zheng Zhang;A. Pizzoferrato;Mihai Cucuringu;Zhenming Liu
BATS: A Spectral Biclustering Approach to Single Document Topic Modeling and Segmentation
- DOI:10.1145/3468268
- 发表时间:2021-12-01
- 期刊:
- 影响因子:5
- 作者:Wu, Qiong;Hare, Adam;Li, Yanhua
- 通讯作者:Li, Yanhua
Equity2Vec: end-to-end deep learning framework for cross-sectional asset pricing
- DOI:10.1145/3490354.3494409
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Qiong Wu;Christopher G. Brinton;Zhenghao Zhang;A. Pizzoferrato;Zhenming Liu;Mihai Cucuringu
- 通讯作者:Qiong Wu;Christopher G. Brinton;Zhenghao Zhang;A. Pizzoferrato;Zhenming Liu;Mihai Cucuringu
Symphony in the Latent Space: Provably Integrating High-dimensional Techniques with Non-linear Machine Learning Models
- DOI:10.48550/arxiv.2212.00852
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Qiong Wu;Jian Li;Zhenming Liu;Yanhua Li;Mihai Cucuringu
- 通讯作者:Qiong Wu;Jian Li;Zhenming Liu;Yanhua Li;Mihai Cucuringu
Toward Efficient Interactions between Python and Native Libraries
实现 Python 和本机库之间的高效交互
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tan, J;Chen, C;Liu, Z;Ren, R;Song, R;Shen, X;Liu, X
- 通讯作者:Liu, X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Stathopoulos其他文献
Recovering Mesh Geometry from a Stiffness Matrix
- DOI:
10.1023/a:1020182605597 - 发表时间:
2002-08-01 - 期刊:
- 影响因子:2.000
- 作者:
Andreas Stathopoulos;Shang-Hua Teng - 通讯作者:
Shang-Hua Teng
Runtime and Programming Support for Memory Adaptation in Scientific Applications via Local Disk and Remote Memory
- DOI:
10.1007/s10723-007-9075-7 - 发表时间:
2007-04-14 - 期刊:
- 影响因子:2.900
- 作者:
Richard T. Mills;Chuan Yue;Andreas Stathopoulos;Dimitrios S. Nikolopoulos - 通讯作者:
Dimitrios S. Nikolopoulos
Andreas Stathopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Stathopoulos', 18)}}的其他基金
III: Small: Combinatorial Algorithms for High-dimensional Learning
III:小:高维学习的组合算法
- 批准号:
2008557 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SI2-SSE: Enhancing the PReconditioned Iterative MultiMethod Eigensolver Software with New Methods and Functionality for Eigenvalue and Singular Value Decomposition (SVD) Problems
SI2-SSE:通过针对特征值和奇异值分解 (SVD) 问题的新方法和功能增强预条件迭代多方法特征求解器软件
- 批准号:
1440700 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Algorithms for computing aggregate functions of matrices with applications to Lattice QCD
AF:小型:计算矩阵聚合函数的算法及其在莱迪思 QCD 中的应用
- 批准号:
1218349 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
(AREA: Numerical Computing and Optimization): Numerical Linear Algebra Problems and Quantum Chromodynamics
(领域:数值计算和优化):数值线性代数问题和量子色动力学
- 批准号:
0728915 - 财政年份:2007
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
ITR/AP: High Performance Iterative Methods on Parallel Computers and Distributed Shared Environments
ITR/AP:并行计算机和分布式共享环境上的高性能迭代方法
- 批准号:
0112727 - 财政年份:2001
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Educational Innovation: Undergraduate Modeling, Simulation and Analysis
教育创新:本科建模、仿真与分析
- 批准号:
9712718 - 财政年份:1997
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Elements: Software: NSCI: Chrono-An open-source simulation platform for computational dynamics problems
合作研究:要素:软件:NSCI:Chrono-计算动力学问题的开源仿真平台
- 批准号:
1835727 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Elements: NSCI-Software -- A General and Effective B-Spline R-Matrix Package for Charged-Particle and Photon Collisions with Atoms, Ions, and Molecules
元素:NSCI 软件——用于带电粒子和光子与原子、离子和分子碰撞的通用且有效的 B 样条 R 矩阵包
- 批准号:
1834740 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSCI Elements: Software - PFSTRASE - A Parallel FileSystem TRacing and Analysis SErvice to Enhance Cyberinfrastructure Performance and Reliability
NSCI Elements:软件 - PFSTRASE - 用于增强网络基础设施性能和可靠性的并行文件系统跟踪和分析服务
- 批准号:
1835135 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software: NSCI: HDR: Building An HPC/HTC Infrastructure For The Synthesis And Analysis Of Current And Future Cosmic Microwave Background Datasets
合作研究:要素:软件:NSCI:HDR:构建 HPC/HTC 基础设施以合成和分析当前和未来的宇宙微波背景数据集
- 批准号:
1835526 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software NSCI: Constitutive Relation Inference Toolkit (CRIKit)
协作研究:元素:软件 NSCI:本构关系推理工具包 (CRIKit)
- 批准号:
1835825 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Elements: Software: NSCI: Efficient GPU Enabled QM/MM Calculations: AMBER Coupled with QUICK
要素: 软件:NSCI:支持高效 GPU 的 QM/MM 计算:AMBER 与 QUICK 相结合
- 批准号:
1835144 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Elements: Software: NSCI: A Quantum Electromagnetics Simulation Toolbox (QuEST) for Active Heterogeneous Media by Design
要素: 软件:NSCI:用于主动异质介质设计的量子电磁仿真工具箱 (QuEST)
- 批准号:
1835267 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software: NSCI: Constitutive Relation Inference Toolkit (CRIKit)
协作研究:要素:软件:NSCI:本构关系推理工具包 (CRIKit)
- 批准号:
1835792 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software: NSCI: HDR: Building An HPC/HTC Infrastructure For The Synthesis And Analysis Of Current And Future Cosmic Microwave Background Datasets
合作研究:要素:软件:NSCI:HDR:构建 HPC/HTC 基础设施以合成和分析当前和未来的宇宙微波背景数据集
- 批准号:
1835768 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software: NSCI: HDR: Building An HPC/HTC Infrastructure For The Synthesis And Analysis Of Current And Future Cosmic Microwave Background Datasets
合作研究:要素:软件:NSCI:HDR:构建 HPC/HTC 基础设施以合成和分析当前和未来的宇宙微波背景数据集
- 批准号:
1835865 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant