QLC: EAGER: Toward Magnetic Selectivity with Molecular Clock Qubits

QLC:EAGER:利用分子时钟量子位实现磁选择性

基本信息

  • 批准号:
    1836537
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

In this project, funded by the Chemical Structure, Dynamic & Mechanism B Program of the Chemistry Division, Professor Joseph M. Zadrozny of the Department of Chemistry at Colorado State University is developing new classes of metal complexes for the detection of physiological magnetic phenomena. These complexes are designed as molecular analogues to spin-based quantum bits (qubits) of a quantum computer. Molecular qubits are extremely sensitive to their local environment, a sensitivity that is to be suppressed for quantum computing applications. The proposed work will embark in a different direction by asking the fundamental question: Can the inherent sensitivity of molecular qubits be embraced to create new bioimaging sensors? Toward such application, it is desirable to focus the extreme sensitivity of a qubit toward specific environmental factors. This program will take the first fundamental steps toward that vision of selective sensitivity. Outreach activities as part of this project include the creation of a learning kit to instruct students at the K-12 level on fundamental magnetic phenomena. A nascent type of molecular qubits are the so-called clock qubits, which possess long spin-lattice and spin-spin relaxation times that result from a strong insensitivity to magnetic phenomena. This insensitivity stands as a stark counterpoint to conventional molecular qubits, which possess relaxation times that are strongly affected by local magnetism. The relative sensitivity of the two classes of qubits indicates an inherent tunability of susceptibility to nearby magnetism, potentially enabling relaxation-time-based sensing probes to be targeted toward only specific classes of environmental spins, e.g. those that occur in different types of biomolecules. In this work, a model system based on a V(IV) molecule qubit will explore fundamental questions at the heart of clock qubit behavior: (1) How do these systems interact with different classes of environmental nuclear spins? (2) How do these clock qubits interact with different classes of proximate electronic spins? Finally, (3) Is this interaction at all favored for certain classes of spins over others, and what are the factors that govern that favor? Each of these fundamental questions underlies the eventual development of targeted sensitivity toward specific types of spin-bearing biologically relevant molecules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科罗拉多州立大学化学系的Joseph M. Zadrozny教授在化学结构、动态和机制B项目的资助下,正在开发新型金属配合物,用于检测生理磁现象。这些复合物被设计为量子计算机中基于自旋的量子比特(量子位)的分子类似物。分子量子位对其局部环境极其敏感,这种敏感性在量子计算应用中要加以抑制。这项提议的工作将从一个不同的方向出发,提出一个基本问题:能否利用分子量子比特固有的灵敏度来创造新的生物成像传感器?对于这种应用,希望将量子位的极端灵敏度集中在特定的环境因素上。这个项目将为实现选择性敏感性迈出第一步。作为该项目的一部分,外展活动包括制作一套学习工具包,指导K-12年级的学生了解基本的磁现象。一种新生的分子量子位是所谓的时钟量子位,它具有较长的自旋晶格和自旋弛豫时间,这是由于对磁现象的强烈不敏感造成的。这种不敏感与传统分子量子位形成鲜明对比,后者的弛豫时间受局部磁性的强烈影响。这两类量子位的相对灵敏度表明,它们对附近磁性的敏感性具有固有的可调性,这可能使基于松弛时间的传感探针能够仅针对特定类型的环境自旋,例如发生在不同类型生物分子中的自旋。在这项工作中,基于V(IV)分子量子比特的模型系统将探索时钟量子比特行为核心的基本问题:(1)这些系统如何与不同类型的环境核自旋相互作用?(2)这些时钟量子位如何与不同类别的近距电子自旋相互作用?最后,(3)这种相互作用对某些类型的自旋是否比其他类型的更有利,是什么因素决定了这种有利?这些基本问题中的每一个都是最终发展针对特定类型的带有自旋的生物相关分子的靶向敏感性的基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orientation dependence of phase memory relaxation in the V(IV) ion at high frequencies
高频 V(IV) 离子中相位记忆弛豫的方向依赖性
  • DOI:
    10.1016/j.cplett.2019.137034
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jackson, Cassidy E.;Lin, Chun-Yi;van Tol, Johan;Zadrozny, Joseph M.
  • 通讯作者:
    Zadrozny, Joseph M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Zadrozny其他文献

Joseph Zadrozny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Zadrozny', 18)}}的其他基金

CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
  • 批准号:
    2419717
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Toward High Intensity Forbidden EPR Transitions In Bimetallic Complexes
双金属配合物中高强度禁止的 EPR 转变
  • 批准号:
    2419767
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Toward High Intensity Forbidden EPR Transitions In Bimetallic Complexes
双金属配合物中高强度禁止的 EPR 转变
  • 批准号:
    2246814
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
  • 批准号:
    2326837
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
  • 批准号:
    2047325
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: Toward Eco-Friendly Oceanography - Using Biodegradable Materials for Drifting Buoys
EAGER:迈向生态友好型海洋学 - 使用可生物降解材料制作漂流浮标
  • 批准号:
    2415106
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Toward a Decentralized Cross-administrator Zone Management System: Policy and Technology
EAGER:走向去中心化的跨管理员区域管理系统:政策和技术
  • 批准号:
    2331936
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Toward a Network-Based Framework for Analysis and Control of Inverter-Dominated Power Grids
EAGER:建立基于网络的逆变器主导电网分析和控制框架
  • 批准号:
    2333563
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Toward Attack-Resilient Statistical Inference
EAGER:迈向抗攻击统计推断
  • 批准号:
    2224150
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Toward unifying theories of living systems
渴望:统一生命系统理论
  • 批准号:
    2232049
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research/EAGER: Toward Long-Distance Ocean and Seismic Sensing on Optical Telecommunications Infrastructure
合作研究/EAGER:在光通信基础设施上实现长距离海洋和地震传感
  • 批准号:
    2211274
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research/EAGER: Toward Long-Distance Ocean and Seismic Sensing on Optical Telecommunications Infrastructure
合作研究/EAGER:在光通信基础设施上实现长距离海洋和地震传感
  • 批准号:
    2210938
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research/EAGER: Toward Long-Distance Ocean and Seismic Sensing on Optical Telecommunications Infrastructure
合作研究/EAGER:在光通信基础设施上实现长距离海洋和地震传感
  • 批准号:
    2211068
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Toward a tractable genetic model of DNA virus - Drosophila interaction
EAGER:建立 DNA 病毒与果蝇相互作用的易处理遗传模型
  • 批准号:
    2135167
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了