EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires

EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源

基本信息

  • 批准号:
    2020015
  • 负责人:
  • 金额:
    $ 16.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Single-photon sources are one of most useful basic building blocks for many future quantum technologies. In particular, quantum communication, quantum computing and quantum sensing are the areas that can be revolutionized by the development of high-performance single-photon sources. In order to enable these practical quantum applications, such photon sources must be robust, coherent, tunable and bright, and they should exhibit high- light-collection efficiency and -directionality at the same time. To date, no technology options can provide such a quantum light source that simultaneously combines all of these key properties. This project aims to develop a single-photon source that can meet these aggressive performance specifications. Such unprecedented performance will enable future development of a photonic integrated circuit platform that will simultaneously improve performance and efficiency as well as help meet low size, weight and power-cost constraints for next-generation quantum photonic technologies. In addition to high impact research advancement, our project will also support interdisciplinary education activities in nanoscience and nanotechnology. Because the proposed research project crosses different disciplines of science and engineering, such as optics, materials science, electrical engineering, physics, and chemistry, it will lead to a range of potential, hands-on learning activities that can engage students of varying backgrounds.The primary research objective of the proposed project is to advance intellectual understanding of non-classical light sources through the development of novel photonic platforms that require growth of one-dimensional III-nitride nanowire (NW) structures. This advancement will enable practical quantum technologies at wavelengths ideally suited for long-distance quantum networks with existing fiber-optic telecommunication infrastructures. In this EAGER proposal, we explore a new and unique technique for the growth of nitrogen (N)-polar GaN NWs with InGaN quantum dots (QDs) deterministically placed inside using a bottom-up approach via plasma-assisted molecular beam epitaxy (PAMBE). Unlike a top-down technique, the bottom-up growth method allows proper placement of QDs on the axis of tapered NW-waveguides and an improved light extraction with reduced tapering angles on top of NWs. The long-term objective of the proposed research is to achieve bright and ultra-spectrally pure single-photon sources (SPSs) that meet aggressive performance specifications, such as high count rate and near-zero auto-correlation factors for high-fidelity entanglement. The work performed within this EAGER project will serve as a foundation for designing highly-efficient and coherent tunable SPSs. The project will advance knowledge on the MBE growth of the InGaN/GaN QDs within NWs and the associated growth conditions including polarity and growth rate control. The deterministic QD-NWs based SPSs and its emission properties will be well-understood from the study. This project will also generate technical advancements to push the light emission towards longer wavelengths for the NW-based device technologies by increasing the indium incorporation within QDs and controlling the polarity of NWs. The proposed research will lead to deeper fundamental insights into mechanisms and processes involved in scalable quantum photonic devices and integrated circuits. This inherently interdisciplinary research combines material science, quantum physics, chemical engineering and electrical engineering to generate new fundamental knowledge in several scientific fields, indicating that the concept is highly novel and transformative.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单光子源是许多未来量子技术的最有用的基本构建模块之一。 特别是,量子通信,量子计算和量子传感是可以通过开发高性能单光子源而发生革命性变化的领域。为了实现这些实际的量子应用,这样的光子源必须是鲁棒的、相干的、可调谐的和明亮的,并且它们应该同时表现出高光收集效率和高方向性。到目前为止,没有任何技术选项可以提供这样的量子光源,同时结合所有这些关键特性。该项目旨在开发一种能够满足这些积极性能规格的单光子源。这种前所未有的性能将使光子集成电路平台的未来发展能够同时提高性能和效率,并有助于满足下一代量子光子技术的低尺寸,重量和功耗限制。 除了高影响力的研究进展,我们的项目还将支持纳米科学和纳米技术的跨学科教育活动。由于拟议的研究项目跨越了科学和工程的不同学科,如光学,材料科学,电气工程,物理学和化学,它将导致一系列的潜力,实践的学习活动,可以参与不同背景的学生。拟议项目的主要研究目标是促进非智力的理解,通过开发需要生长一维III族氮化物纳米线(NW)结构的新型光子平台,实现了传统光源的发展。这一进步将使实用的量子技术在波长上非常适合于现有光纤电信基础设施的长距离量子网络。在这个EAGER提案中,我们探索了一种新的独特的技术,用于通过等离子体辅助分子束外延(PAMBE)使用自下而上的方法生长具有InGaN量子点(QD)的氮(N)极性GaN纳米线。与自上而下的技术不同,自下而上的生长方法允许将QD适当地放置在锥形NW波导的轴上,并且在NW顶部上具有减小的锥角的改善的光提取。拟议研究的长期目标是实现明亮和超光谱纯单光子源(SPS),满足积极的性能规格,如高计数率和高保真纠缠的近零自相关因子。在EAGER项目中进行的工作将作为设计高效和相干可调SPS的基础。该项目将推进对纳米线内InGaN/GaN量子点的MBE生长以及相关生长条件(包括极性和生长速率控制)的了解。基于量子点纳米线的SPS及其发射特性将从研究中得到很好的理解。该项目还将产生技术进步,通过增加量子点中的铟结合和控制纳米线的极性,将基于纳米线的器件技术的光发射推向更长的波长。拟议的研究将导致对可扩展量子光子器件和集成电路所涉及的机制和过程的更深入的基本见解。这一本质上跨学科的研究结合了材料科学、量子物理学、化学工程和电气工程,在多个科学领域产生了新的基础知识,表明这一概念是高度新颖和变革性的。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective Area Epitaxy of GaN Nanostructures: MBE Growth and Morphological Analysis
  • DOI:
    10.1021/acs.cgd.2c01506
  • 发表时间:
    2023-05-16
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hasan, Syed M. N.;You, Weicheng;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
Effects of InGaN quantum disk thickness on the optical properties of GaN nanowires
  • DOI:
    10.1016/j.jcrysgro.2022.126654
  • 发表时间:
    2022-04-04
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Hasan, Syed M. N.;Ghosh, Arnob;Arafin, Shamsul
  • 通讯作者:
    Arafin, Shamsul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shamsul Arafin其他文献

Rh/InGaNsub1−/subemsubx/sub/emOemsubx/sub/em nanoarchitecture for light-driven methane reforming with carbon dioxide toward syngas
RH/INGANSUB1-/subemsubx/sub/sub/emoeemsubx/sub/sub/em纳米结构,用于轻型甲烷改革,二氧化碳朝向syngas
  • DOI:
    10.1016/j.scib.2024.02.020
  • 发表时间:
    2024-05-30
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Yixin Li;Jinglin Li;Tianqi Yu;Liang Qiu;Syed M. Najib Hasan;Lin Yao;Hu Pan;Shamsul Arafin;Sharif Md. Sadaf;Lei Zhu;Baowen Zhou
  • 通讯作者:
    Baowen Zhou
Luminescence and Raman spectroscopic properties of cubic boron nitride grown by drop-casting technique
  • DOI:
    10.1016/j.jcrysgro.2022.126781
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Mahafuzur Rahaman;Shantanu Saha;Syed M.N. Hasan;Weicheng You;Arnob Ghosh;Md Saiful Islam Sumon;S.K. Shafaat Saud Nikor;Benjamin Freeman;Shrivatch Sankar;Hendrik Colijn;Sharif Md. Sadaf;Jivtesh Garg;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin
An All-Optical Neuron for Scaling Integrated Photonic Neural Networks
用于扩展集成光子神经网络的全光神经元
  • DOI:
    10.1109/ipc57732.2023.10360538
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md. Saiful Islam Sumon;Mihai Crisan;Weicheng You;Shrivatch Sankar;Imad I. Faruque;Sarvagya Dwivedi;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin

Shamsul Arafin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shamsul Arafin', 18)}}的其他基金

U.S.-Ireland R&D Partnership - Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)
美国-爱尔兰 R
  • 批准号:
    2310869
  • 财政年份:
    2023
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
CAREER: GaSb-based Photonic Integrated Circuits for Short- and Mid-Wave Infrared Applications
职业:用于短波和中波红外应用的 GaSb 基光子集成电路
  • 批准号:
    2144375
  • 财政年份:
    2022
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
Tunnel Junction Based AlGaN Ultraviolet Lasers
基于隧道结的 AlGaN 紫外激光器
  • 批准号:
    2034140
  • 财政年份:
    2020
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mentored Excellence Toward Research and Industry Careers 2
指导卓越研究和行业职业 2
  • 批准号:
    2322416
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了