FMitF: Collaborative Research: Synergies between Program Synthesis and Neural Learning of Graph Structures

FMITF:协作研究:程序综合与图结构神经学习之间的协同作用

基本信息

  • 批准号:
    1836822
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

A challenging problem in a diverse and growing body of applications concerns automatically generating computer programs that satisfy desired functional requirements. Two promising and complementary approaches that have recently emerged to address this problem are program synthesis and neural learning. This project aims to synergistically combine the two approaches to improve the productivity of programmers and the quality of software. The project also aims to train graduate students at the intersection of formal methods and machine learning, engage undergraduate students in research through internships, and disseminate results in the form of publicly available course materials and open-source software artifacts.Program synthesis ensures that the generated program is correct with respect to a logical specification. Moreover, users can easily guide the synthesizer away from an undesired program and towards a desired one, by changing the specification. On the other hand, neural learning can handle user requirements that are impossible to provide via a logical specification -- a fact highlighted by the success of neural networks in domains such as natural language processing, computer vision, and robotics. Moreover, neural networks scale extremely well, by virtue of their ability to learn latent patterns that repeat across different programs. This project builds upon recent progress in program synthesis by developing novel learning-based mechanisms that enable flexible specifications, richer verifiers, and scalable solvers. In the realm of machine learning, it enables deep neural networks to provide correctness guarantees that are typically required when reasoning about rich structured data. In doing so, it develops novel architectures and methodologies for representation learning, reinforcement learning, and learning with limited data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在多样化和不断增长的应用主体中的一个具有挑战性的问题涉及自动生成满足期望的功能要求的计算机程序。最近出现的两种有前途的和互补的方法来解决这个问题是程序合成和神经学习。本项目旨在协同联合收割机这两种方法,以提高程序员的生产力和软件的质量。该项目还旨在培养研究生在形式化方法和机器学习的交叉点上的能力,通过实习让本科生参与研究,并以公开课程材料和开源软件工件的形式传播研究成果。程序合成确保生成的程序在逻辑规范方面是正确的。此外,用户可以很容易地引导合成器远离一个不需要的节目,朝着一个所需的,通过改变规范。另一方面,神经学习可以处理不可能通过逻辑规范提供的用户需求-神经网络在自然语言处理,计算机视觉和机器人等领域的成功突出了这一事实。此外,神经网络的扩展性非常好,因为它们能够学习在不同程序中重复的潜在模式。该项目建立在程序合成的最新进展,通过开发新的基于学习的机制,使灵活的规范,更丰富的验证程序和可扩展的求解器。在机器学习领域,它使深度神经网络能够提供在推理丰富的结构化数据时通常需要的正确性保证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Le Song其他文献

Real-time 3D Finger Pointing for an Augmented Desk
增强办公桌的实时 3D 手指指向
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Le Song;M. Takatsuka
  • 通讯作者:
    M. Takatsuka
MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training
MSAGPT:通过 MSA 生成预训练进行神经提示蛋白质结构预测
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Chen;Zhilei Bei;Xingyi Cheng;Pan Li;Jie Tang;Le Song
  • 通讯作者:
    Le Song
The BAHSIC family of gene selection algorithms
BAHSIC 系列基因选择算法
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Le Song;J. Bedő;Karsten M. Borgwardt;A. Gretton;Alex Smola
  • 通讯作者:
    Alex Smola
Antibacterial evaluation of cotton textile treated by trialkoxysilane compounds with antimicrobial moiety
含抗菌基团的三烷氧基硅烷化合物处理棉纺织品的抗菌评价
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Le Song;R. Baney
  • 通讯作者:
    R. Baney
Kernel Belief Propagation
核置信传播

Le Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Le Song', 18)}}的其他基金

III: Small: Collaborative Research: Efficient, Nonparametric and Local-Minimum-Free Latent Variable Models: With Application to Large-Scale Computer Vision and Genomics
III:小型:协作研究:高效、非参数和局部最小自由潜变量模型:应用于大规模计算机视觉和基因组学
  • 批准号:
    1218749
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

FMitF: Collaborative Research: RedLeaf: Verified Operating Systems in Rust
FMITF:协作研究:RedLeaf:经过验证的 Rust 操作系统
  • 批准号:
    2313411
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
  • 批准号:
    2349461
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
  • 批准号:
    2318970
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Knitting Semantics
合作研究:FMitF:第一轨:针织语义
  • 批准号:
    2319182
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319243
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319400
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319399
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
  • 批准号:
    2318954
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: The Phlox framework for verifying a high-performance distributed database
合作研究:FMitF:第一轨:用于验证高性能分布式数据库的 Phlox 框架
  • 批准号:
    2319167
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了